COMUNE DI LEONESSA

ADEGUAMENTO SISMICO DELLA "SCUOLA DELL'INFANZIA (MATERNA)" DI LEONESSA, VIA ALDO MORO

Decreto del MIUR 20 luglio 2017 n. 511 Determinazione Area Difesa Suolo Regione Lazio G14602 del 26-10-2017 Decreto del MIUR 29 dicembre 2017 in GU n. 115 Sg del 10-5-2018

RELAZIONE GEOLOGICA

Committente: COMUNE di LEONESSA

Agosto 2019

II Geologo

Dott, Geol. Francesco CHIARETTI

Ordine dei Geologi del Lazio N° 600

Indice

1. INTRODUZIONE	1
2. INQUADRAMENTO GEOGRAFICO-GEOLOGICO GENERALE	3
3. CARATTERISTICHE GEOMORFOLOGICHE	5
4. CARATTERISTICHE IDROGEOLOGICHE, IDRAULICHE E IDROGRAFICHE	6
5. CARATTERISTICHE LITOSTRATIGRAFICHE	7
6. CARATTERISTICHE E PARAMETRI SISMICI – AZIONE SISMICA	7
6.1. Sismicità storica dell'area in studio	7
6.2. Sismicità recente dell'area in studio	12
6.3. Pericolosità sismica di base	21
6.4. Parametri sismici in riferimento al D.M. 17-01-2018	26
6.5. Categoria di Sottosuolo	26
6.6. Spettro di risposta elastico in accelerazione delle componenti orizzontali	27
6,7. Amplificazione stratigrafica Ss	28
6.8. Valori di ag, F0 e Tc	28
6.9. Amplificazione topografica St	29
6.10. Stabilità nei confronti della liquefazione	29
6.11. Spettro di risposta elastico in accelerazione della componente verticale	30
6.12. Spettro di risposta elastico in spostamento delle componenti orizzontali	30
7. MICROZONAZIONE SISMICA LIVELLO 1	31
8. MICROZONAZIONE SISMICA LIVELLO 3	31
9. LIVELLO DI VULNERABILITA' DELL'OPERA	31
10. INDAGINI GEOGNOSTICHE E PROVE GEOTECNICHE E GEOFISICHE	32
11. RISULTATI DELLE INDAGINI	35
11.1. Sondaggio geognostico S1DH	35
11.2. Sondaggio geognostico S2DH	35
11.3. Sondaggio geognostico S3	37

11.4. Sondaggio geognostico SF1	38
11.5. Sondaggio geognostico SF2	39
11.6. Sondaggio geognostico SF3	40
11.7. Sondaggio geognostico SF4	41
11.8. Prove geotecniche SPT in fori di sondaggio	42
11.9. Prove geotecniche di laboratorio terre	44
11.10. Analisi multicanale delle onde di superficie MASW	45
11.11. Prove geofisiche DOWN-HOLE in S1DH e in S2DH	46
11.12. Prove di Rumore Sismico HVSR	50
11.13. Sondaggio geognostico S (fase pregressa)	51
11.14. Prove geotecniche SPT in foro di sondaggio (fase pregressa)	52
11.15. Prove geotecniche di laboratorio terre (fase pregressa)	53
11.16. MASW e Sismica a Rifrazione (fase pregressa)	54
12. CONDIZIONI FONDALI SCUOLA DELL'INFANZIA (MATERNA)	55
13. MODELLO GEOLOGICO-GEOTECNICO DEL TERRENO	
DIRETTAMENTE AL DI SOTTO DELLE STRUTTURE FONDALI E MURARIE	56
14. MODELLO GEOLOGICO-GEOTECNICO DEL TERRENO	
IN CONDIZIONI NATURALI DELL'INTERA ZONA DEL PLESSO SCOLASTICO	58
15. AZIONE SISMICA – NALISI DELLA RISPOSTA SISMICA LOCALE	68
15.1. Individuazione del moto sismico di base – Accelerazione di base	63
15.2. Individuazione del moto sismico di base – Dati di disaggregazione	73
15.3. Individuazione del moto sismico di INPUT	
Scelta degli accelerogrammi di input stato limite SLV	78
15.4. Individuazione del moto sismico di INPUT	
Scelta degli accelerogrammi di input stato limite SLD	85
15.5. Modellazione della RSL	92
16. RISULTATI DI CALCOLO DELLA RSL STATO LIMITE SLV	94
16.1. Iterazioni	95
16.2. Andamento deformazione di taglio	99
16.3. Andamento accelerazione max dal bedrock alla superficie	100

16.4. Spettro medio di Fourier	101
16.5. Spettro medio dello Spostamento	102
16.6. Spettro medio della Velocità	105
16.7. Spettro elastico medio di Accelerazione in RSL	106
16.8. Confronto spettro elastico medio di RSL . Spettri di NTC 2018 - SLV	114
17. RISULTATI DI CALCOLO DELLA RSL STATO LIMITE SLD	116
17.1. Iterazioni	117
17.2. Andamento deformazione di taglio	121
17.3. Andamento accelerazione max dal bedrock alla superficie	122
17.4. Spettro medio di Fourier	123
17.5. Spettro medio dello Spostamento	124
17.6. Spettro medio della Velocità	127
17.7. Spettro elastico medio di Accelerazione in RSL	132
17.8. Confronto spettro elastico medio di RSL . Spettri di NTC 2018 - SLD	136
18. PERICOLOSITA' GEOLOGICA	138
19. VALORI CARATTERISTICI DEI PARAMETRI GEOTECNICI	139
20. INDICAZIONI OPERE DI FONDAZIONE SUPERFICIALE	141
21. VERIFICHE AGLI STATI LIMITE ULTIMI	142
22. DISCUSSIONE DEI RISULTATI E CONCLUSIONI GEOLOGICO-TECNICHE	146

23. ALLEGATI CARTOGRAFICI, TECNICI E GEOTEMATICI

- INQUADRAMENTO TERRITORIALE CTR scala 1:10.000
- INQUADRAMENTO TERRITORIALE CTR scala 1:5.000
- STRALCIO CARTA GEOLOGICA GENERALE scala 1:25.000
- STRALCIO CARTA GEOLOGICA DI DETTAGLIO scala 1:5.000
- STRALCIO CARTA DELLE PENDENZE scala 1:5.000
- STRALCIO DEL PAI TEVERE scala 1:5.000
- STRALCIO DEL PAI TEVERE AGGIORNAMENTO scala 1:5.000

- CARTA GEOLOGICO-TECNICA DA STUDIO DI MS1-MS3 scala 1:5.000
- SEZIONI GEOLOGICHE DA STUDIO DI MS3 scala 1:5.000
- CARTA DELLE MOPS DI MICROZONAZIONE SISMICA DI LIVELLO 1 scala 1:5.000
- CARTA DELLE MOPS DI MICROZONAZIONE SISMICA DI LIVELLO 1-3 scala 1:5.000
- CARTA DI MICROZONAZIONE SISMICA DI LIVELLO 3 scala 1:5.000
- PLANIMETRIA CATASTALE scala 1:1.000
- CARTA UBICAZIONE INDAGINI GEOGNOSTICHE, GEOTECNICHE E GEOFISICHE
- RAPPORTO RISULTANZE SONDAGGI con SPT e ATTREZZATI DH "S1DH" e "S2DH"
- RAPPORTO RISULTANZE SONDAGGI SU BASE FONDAZIONI e SU BASE MURATURE"
- RAPPORTO PROVE DI LABORATORIO GEOTECNICO SU CAMPIONI INDISTURBATI
- RELAZIONE DI CALCOLO PROVE SPT
- RAPPORTO PROVA GEOFISICA DOWN-HOLE "DH1"
- RAPPORTO PROVA GEOFISICA DOWN-HOLE "DH2"
- RAPPORTO PROFILI SISMICI VERTICALI M.A.S.W. da "M 1" ad "M 4"
- RAPPORTO PROVE DI RUMORE SISMICO da HVSR 1 a HVSR 4
- RAPPORTO RISULTANZE SONDAGGIO con SPT "S" (fase pregressa)
- RAPPORTO PROVE di LABORATORIO (fase pregressa)
- RAPPORTO PROVE MASW e SISMICA A RIFRAZIONE (fase pregressa)

PROVINCIA DI RIETI REGIONE LAZIO

MINISTERO DELL'ISTRUZIONE, UNIVERSITA' E RICERCA

ADEGUAMENTO SISMICO DELLA "SCUOLA DELL'INFANZIA" (MATERNA) SITA IN LEONESSA, VIA ALDO MORO

Decreto del MIUR 20 luglio 2017 n. 511

Determinazione Area Difesa Suolo Regione Lazio n. G14602 del 26-10-2017

Decreto del MIUR 29 dicembre 2017 in GU n. 115 Sq del 10-5-2018

RELAZIONE GEOLOGICA

Committente: COMUNE di LEONESSA

INTRODUZIONE

Su incarico del Comune di Leonessa, lo scrivente ha eseguito lo studio geologico-tecnico-sismico di dettaglio del plesso scolastico dove ricade la Scuola dell'Infanzia (Materna) del Comune di Leonessa, in Via Aldo Moro del Capoluogo di Leonessa, foglio 95, particella 271, il cui edificio è destinato agli interventi di adeguamento sismico di cui al titolo.

Lavoro svolto in attuazione del Decreto del MIUR 20 luglio 2017 n. 511; Determinazione Area Difesa Suolo Regione Lazio n. G14602 del 26-10-2017; Decreto del MIUR 29 dicembre 2017 in GU n. 115 Serie generale del 10-5-2018 Individuazione degli interventi di adeguamento antisismico degli edifici scolastici da finanziare con le risorse relative alle annualità 2016-2017 - Fondo protezione civile. (Prot. n. 1048).

La presente relazione illustra l'assetto geomorfologico ed idrogeologico e la situazione litostratigrafica, geotecnica e sismica locale, desunte da un rilevamento geologico e geomorfologico generale e di dettaglio di un'area sufficientemente estesa, da 4 Sondaggi geognostici a rotazione e carotaggio continuo con SPT (Standard Penetration Test) in fori di sondaggio, 3 dei quali eseguiti dalla Sondedile srl di Rieti ed 1 sondaggio eseguito dalla Ditta Geostudi srl, entrambe Società Concessionate e Certificate dal Ministero Infrastrutture e Trasporti; da 4 sondaggi sulla base delle murature/fondazione per accertare la profondità di imposta delle stesse; da prove di laboratorio geotecnico su campioni indisturbati di terreno e da indagini geofisiche sismiche con 2 Down-Hole in fori di sondaggio preventivamente attrezzati, 5 sondaggi verticali delle onde S mediante analisi delle onde di superficie M.A.S.W., 2 stese di Sismica a Rifrazione e 4 misure di Rumore sismico a stazione singola. Tali prospezioni sono state eseguite sia in fase attuale, sia in fasi pregresse e riutilizzate.

Il presente lavoro, essendo il comune di Leonessa classificato nella **Zona Sismica 1** della Nuova Classificazione Sismica Regionale dettata dalla *DGR n. 387 del* **22 maggio 2009** (pubblicata sul BUR Lazio n. 24 del 27.06.2009 - Supplemento Ordinario n. 106) in applicazione dell'Ordinanza del Presidente del Consiglio dei Ministri n. 3519 del 28 Aprile 2006 e della DGR Lazio 766/03, è stato redatto nel rispetto dei seguenti riferimenti normativi:

- **D.M. Infrastrutture e Trasporti del 17.01.2018** "Aggiornamento delle Norme Tecniche per le Costruzioni" (S.O. Gazzetta Ufficiale n. 42 del 20/02/2018).
- Circolare 21.01.2019 n. 7 "Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto mini-steriale 17 gennaio 2018. (S.O. Gazzetta Ufficiale n. 5 del 11/02/2019).
- Regolamento Regionale 13 luglio 2016, n. 14 Snellimento e semplificazione delle procedure per l'esercizio delle funzioni regionali in materia di prevenzione del rischio sismico e di repressione delle violazioni della normativa sismica (BUR Lazio n. 56 del 14/07/2016).
- **DGR Lazio n. 489 del 17 ottobre 2012** Modifica dell'allegato 2 della DGR Lazio n. 387 del 22 maggio 2009.

INQUADRAMENTO GEOGRAFICO - GEOLOGICO GENERALE

L'edificio che ospita la Scuola dell'Infanzia (Materna) del Comune di Leonessa è situato nel Capoluogo di Leonessa, in via Aldo Moro, ed è inserito nella seguente Cartografia nazionale e regionale ufficiale:

- Carta d'Italia I.G.M. (scala 1:25.000 Equidistanza m 25):
 - o Foglio n. 139 Quadrante IV Tavoletta SO "Leonessa"
- Carta Topografica d'Italia IGM (Serie 25 DB Sc. 1:25.000 Equ. m 25):
 - Foglio n. 347 Sezione I "Leonessa"
- Carta Tecnica Regionale (scala 1:10.000 Equidistanza m 10):
 - SEZIONE N°. 347040 "Leonessa"
- Planimetria catastale:
 - o FOGLIO n°. 95 Particella n. 271

Il sito è ubicato nella parte meridionale della Piana di Leonessa che in età Plio-Pleistocenica, era occupata da un bacino lacustre intramontano di origine morfotettonica. All'interno di tale depressione si sono depositati abbondanti accumuli di materiali alluvionali fluvio-lacustri conglomeratici, sabbiosi e argillosi, responsabili insieme al sollevamento graduale e progressivo dell'area ed allo sfondamento della soglia verso nord - del colmamento del bacino.

La Piana di Leonessa è oggi costituita da questi materiali detritico-alluvionali che risultano variabili negli spessori, nell'estensione verticale, laterale e nei rapporti di giacitura.

In questi ambienti deposizionali, del resto, con notevoli apporti fluviali intersecantisi tra di loro, l'accumulo detritico è condizionato da fattori climatici, morfologici e litologici del bacino di drenaggio; ad essi si aggiungono altri elementi quali l'influenza degli afflussi idrici e la quantità e le tipologie dei sedimenti, soprattutto in relazione alla percentuale e all'alternanza tra materiali grossolani e fini.

Altri fattori importantissimi che hanno influenzato la deposizione dei materiali sono stati il regime fluviale e la morfologia del bacino accettore. Il primo ha condizionato le velocità e capacità di trasporto determinando intersezioni a livello di sedimentazione, mentre il secondo ha determinato varie serie litostratigrafiche, diverse anche a brevissima distanza tra di loro.

Anche la distanza dai bordi del bacino ha rivestito un ruolo fondamentale per ciò che concerne la deposizione del materiale più o meno fine e grossolano determinando anche delle fasce di detriti di falda nei settori pedemontani. Da tutti questi fattori risulta una deposizione molto variabile tra ghiaie, sabbie e argille con interdigitazioni, lenti, sovrapposizioni di serie marginali e di centro lago caratterizzate da spessori ed estensioni laterali piuttosto varie.

Questo assetto litostratigrafico, così mutevole da zona a zona, anche a brevissima distanza, non consente correlazioni e previsioni su grande scala, ma solo su ambito locale molto circoscritto, e costringe ad indagare puntualmente il terreno per acquisirne gli elementi geomeccanici.

Le dorsali montane che circondano in tutti i lati la Piana, e ne costituiscono il substrato profondo, sono invece costituite dalle formazioni geologiche calcaree e calcareo-marnose riferibili alla serie di facies umbro-marchigiana-sabina in zona di transizione con la facies carbonatica di piattaforma laziale-abruzzese.

Queste formazioni sono interessate da numerose ed evidenti dislocazioni tettoniche, sia a componente distensiva sia compressiva, che ne complicano l'assetto strutturale dando grande variabilità nei rapporti di giacitura e contatti anomali tra le varie formazioni. Al passaggio tra le dorsali montuose e le zone pianeggianti sono evidenti consistenti fasce di depositi detritici di falda caratterizzati da alternanze casuali di materiali fini e grossolani.

Le alluvioni lacustri e fluvio-lacustri a componente pelitica danno morfologie essenzialmente pianeggianti e generalmente improntate alla stabilità. I depositi conglomeratici, a luoghi cementati anche in grossi banchi, determinano versanti scoscesi, ma improntati alla stabilità.

Le formazioni calcaree erodibili danno le morfologie tipiche di fianchi montani arrotondati, solo a volte fortemente scoscesi in prossimità dei banchi calcarei compatti e poco fratturati. In prossimità delle formazioni più argillose-marnose è possibile rinvenire, anche se raramente, dei fenomeni franosi dovuti a cause rotazionali o di scivolamento interstrato.

SITUAZIONE GEOLOGICA - TECNICA DELL'AREA IN ESAME

CARATTERISTICHE GEOMORFOLOGICHE

Il plesso scolastico del Comune di Leonessa si trova nel capoluogo di Leonessa, immediatamente a nord del centro storico, lungo Viale Aldo Moro. Specificatamente, il fabbricato che ospita la Scuola dell'Infanzia (Materna) è distinto catastalmente nella particella n. 271 del foglio n. 95, ad una quota media di 962 metri s.l.m. (CTR), in una zona già abbondantemente edificata con fabbricati di civile abitazione, capannoni e strutture ricettive e pubbliche.

Il sito si presenta pianeggiante, proprio in relazione alla natura detriticoalluvionale dei suoli. Una situazione questa che determina la stabilità geomorfologica di tutta la zona, nella quale non sono stati rilevati fenomeni riferibili a processi franosi né in atto, né potenziali, né aree degradate o ad erosione diffusa.

Nell'area indagata circostante il lotto in esame, inoltre, non sono state rilevate cavità naturali o artificiali, né liquefazioni dei suoli che possano compromettere la stabilità dei futuri fabbricati e si possono escludere fenomeni alluvionali. Tutti i fabbricati esistenti nei dintorni, inoltre, presentano adeguati comportamenti statici. Non ci sono elementi idrogeomorfologici da segnalare.

Il sito non rientra nelle aree soggette a rischio gravitativo perimetrate ai sensi del D.L. 180/1998 nel PAI dell'ABTevere.

CARATTERISTICHE IDROGEOLOGICHE, IDRAULICHE E IDROGRAFICHE

Dalle indagini geologiche effettuate fino alla profondità di 30 metri, è emerso che i terreni in questione non vengono interessati da falde acquifere le quali, se esistono, si trovano a profondità elevate e quindi di non influenza rispetto al piano fondale. Nella zona non esistono sorgenti e non si ha notizia di pozzi di captazione.

La presenza di materiali argillosi superficiali e di acque di scolo montano, inoltre, determina un apprezzabile ruscellamento e quindi è necessario realizzare opere di smaltimento delle acque superficiali nel rispetto delle linee naturali di deflusso per non ingenerare fenomeni di dissesto e impaludamenti.

A livello idrogeologico regionale, tali depositi fanno parte del Complesso dei depositi clastici alluvionali costituiti da materiali indifferenziati di conglomerati ciottolosi a luoghi cementati con cemento sabbioso-calcareo e a luoghi in debole matrice limosa; ghiaie, sabbie, limi e argille in percentuale variabile tra di loro (Pliocene superiore-Pleistocene). Lo spessore supera anche i 150 metri.

La permeabilità è molto variabile con caratteristiche idrogeologiche eterogenee: è alta negli orizzonti ciottolosi e praticamente nulla in quelli limosi e argillosi. Questo complesso contiene falde idriche locali e discontinue, ma che, a volte, possono raggiungere anche una buona produttività.

Il sito specifico non risulta inserito nelle aree perimetrate a rischio idraulico ai sensi del D.L. 180/1998 nel PAI dell'ABT.

CARATTERISTICHE LITOSTRATIGRAFICHE

In tutta la zona, al di sotto di locali coperture di terreni di riporto di varia origine e di diversa consistenza, sono presenti le coperture eluviali detritico-argillose del substrato locale costituito da un deposito conglomeratico ciottoloso-ghiaioso-sabbioso calcareo in matrice argillo-sabbiosa a luoghi abbondante, a luoghi cementato. I clasti sono ben arrotondati, eterometrici, con diametri che arrivano a 10 centimetri. A luoghi, si hanno sabbie grossolane fortemente addensate e/o cementate in sacche, lenti e livelli. Il limite superiore di tale substrato è ondulato come riscontrato con le indagini geognostiche e geofisiche.

Tali depositi conglomeratici fluvio-lacustri hanno potenti spessori: sondaggi profondi eseguiti nella Piana li hanno attraversati verticalmente per centinaia di metri. Sono molto addensati, presentano alte caratteristiche geotecniche ed elevati valori di propagazione delle onde S, come accertato con le indagini geosismiche eseguite, tanto che possono essere considerate come bedrock locale.

CARATTERISTICHE E PARAMETRI SISMICI - AZIONE SISMICA

Sismicità storica dell'area di studio

Questi dati sono stati desunti dal Catalogo Parametrico dei Terremoti Italiani 2015 - Database Macrosismico Italiano 2015 scaricato dal sito https://emidius.mi.ingv.it/CPTI15-DBMI15 che rappresenta l'ultimo aggiornamento in materia (il precedente era del 2011).

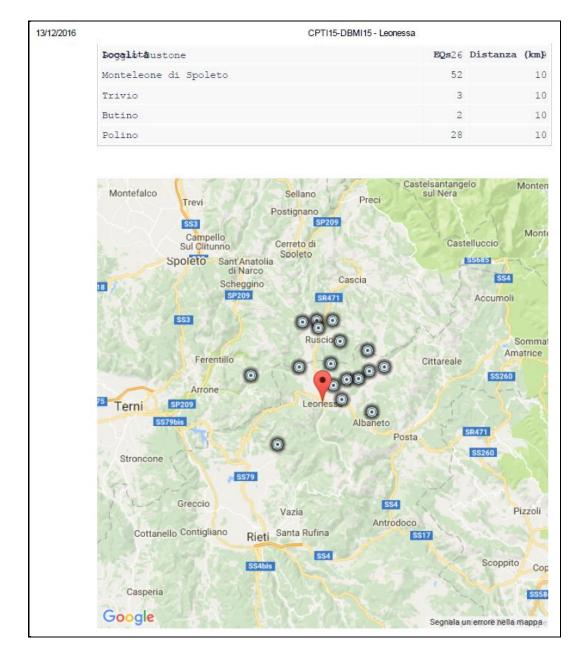
Si riportano di seguito i risultati della ricerca dai quali è possibile vedere che i maggiori terremoti risentiti nell'area in studio sono stati quelli del 1703 della Valnerina e Aquilano e quindi quelli del 1979 della Valnerina e del 1997 sempre della Valnerina.

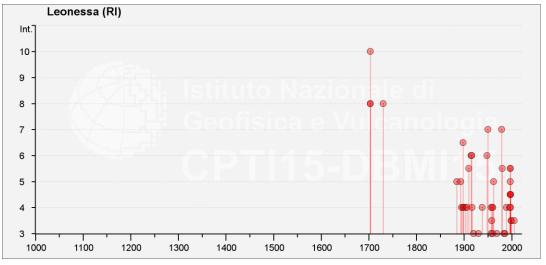
Leonessa

PlaceID IT_53339 Coordinate (lat, lon) 42.566, 12.962 Comune (ISTAT 2015) Leonessa Rieti Provincia Regione Lazio Numero di eventi riportati 84

Effetti							In occasione del terremoto del			
Int.	Anno	Ме	Gi	Но	Mi	Se	Area epicentrale	NMDP	Io	Mw
NF	1639	10	07				Monti della Laga	39	9-10	6.23
8	1703	01	14	18			Valnerina	197	11	6.92
8	1703	01	16	13	30		Appennino laziale-abruzzese	22		
10	1703	02	02	11	05		Aquilano	69	10	6.6
8	1730	05	12	05			Valnerina	115	9	6.0
5	1885	06	17	22	34		Monti Reatini	9	7	4.9
NF	1887	01	27	02	45		Aquilano	30	5	4.1
NF	1892	01	22				Colli Albani	81	7	5.1
5	1893	08	02	00	59		Valnerina	84	5-6	4.5
4	1895	05	20	15	32	5	Valle Umbra	27	5-6	4.4
F	1895	08	25	00	17	1	Sellano	13	5	4.2
NF	1897	12	18	07	24	2	Alta Valtiberina	132	7	5.0
4	1898	04	23	18	22	0	Alta Valnerina	14	4-5	3.9
6-7	1898	06	27	23	38		Reatino	186	8	5.5
4	1898	08	25	16	37	4	Valnerina	67	7	5.0
NF	1899	02	07	12	35	3	Appennino umbro-marchigiano	49	4	4.0
NF	1899	04	21	00	57	5	Narni	45	4	3.9
NF	1899	07	19	13	18	5	Colli Albani	122	7	5.1
4	1902	10	23	08	51		Reatino	77	6	4.7
NF	1904	09	02	11	21		Maceratese	59	5-6	4.6
NF	1905	08	25	20	41		Valle Peligna	29	6	5.1
NF	1906	01	29	15	05		Valle del Tronto	50	5	4.2
4	1906	07	01	00	50		Reatino	41	5	4.2
2-3	1907	01	23	00	25		Adriatico centrale	93	5	4.7
NF	1909	02	06	08	05		Ternano	12	5	4.1
NF	1909	03	16	15	53		Gran Sasso	19	4-5	4.0
NF	1909	08	25	00	22		Crete Senesi	259	7-8	5.3
NF	1909	10	01	01	08		Spoleto	8	5-6	4.4
5-6	1910	03	06	22	22		Monti Reatini	15	4-5	3.9
6	1915	01	13	06	52	4	Marsica	1041	11	7.0
6	1916	11	16	06	35		Alto Reatino	40	8	5.5
4	1917	07	08	02			Appennino laziale-abruzzese	44	5-6	4.6
.ingv.it/CPTI	15-DBM	115/q	uery	plac	e/					

13/12/2016 CPTI15-DRMI15 - Leonessa Effetti In occasione del terremoto del Int. Anno Me Gi Ho Mi Se Area epicentrale NMDP Io Mw 1918 04 14 01 56 Monti Martani 21 6 4.48 1919 06 29 15 06 1 Mugello 10 6.38 565 NF 7-8 5.36 NF 1919 09 10 16 57 Val di Paglia 1919 10 22 06 10 Anzio 6-7 5.22 NE 142 3 1920 02 10 23 57 Monti Sibillini 18 5 4.30 1924 09 15 02 30 Monti Reatini 4-5 3.66 NF 3 1930 04 07 17 17 1 Monti Sibillini 5-6 4.50 NF 1930 07 23 00 08 Irpinia 10 6.67 1931 07 28 08 46 3 Ternano 6 4.38 4 1938 08 12 02 28 3 Appennino laziale-abruzzese 5-6 4.56 7-8 5.29 NF 1940 10 16 13 17 Val di Paglia 106 1948 12 31 03 32 Monti Reatini 8 5.42 1950 09 05 04 08 Gran Sasso 386 8 5 69 NF 1954 03 23 17 55 Collestatte 5 4.16 1957 03 12 16 20 Valnerina 5 4.16 1957 04 11 16 19 Valle del Salto 6 4.94 1958 06 24 06 07 Aquilano 7 5.04 1960 03 16 01 52 4 Monti della Laga 5 4.44 1960 04 23 11 44 Monti Martani 6 4.66 1960 07 20 23 09 Ternano 7 4.67 1962 08 30 12 10 Valnerina 7 5.02 5 1969 09 26 23 40 3 Teramano 5 4.39 1970 09 07 14 02 2 Appennino umbro-marchigiano 5 4.35 56 7 1979 09 19 21 35 3 Valnerina 8-9 5.83 1980 02 28 21 04 4 Valnerina 6 4.97 146 3 1984 05 07 17 50 Monti della Meta 912 8 5.86 1984 05 11 10 41 4 Monti della Meta 7 5.47 NE 342 3 1986 10 13 05 10 0 Monti Sibillini 5-6 4.46 4 1989 12 22 06 48 1 Valle Umbra 5 4.44 1990 09 12 02 59 4 Valle Umbra NF 5-6 4.12 1992 08 25 02 25 4 Aquilano 5 4.11 NF NF 1992 10 24 18 44 4 Monti della Laga 5 4.08 1993 06 05 19 16 1 Valle del Topino 6 4.72 NF 1994 01 05 08 49 2 Monti della Laga NF 4-5 3.47 1994 06 02 16 41 2 Aquilano 4-5 3.99 NF NF 1994 06 02 17 38 1 Aquilano 106 5 4.21 1996 10 20 19 06 5 Appennino laziale-abruzzese 5 4.36 1997 09 26 00 33 1 Appennino umbro-marchigiano 7-8 5.66 760 1997 09 26 09 40 2 Appennino umbro-marchigiano 8-9 5.97 http://emidius.mi.ingv.it/CPTI15-DBMI15/query_place/





13/12/2016 CPTI15-DBMI15 - Leonessa Effetti In occasione del terremoto del Anno Me Gi Ho Mi Se Area epicentrale Int. Io Mw 1997 10 03 08 55 2 Appennino umbro-marchigiano 4-5 490 5.22 1997 10 06 23 24 5 Appennino umbro-marchigiano 437 5.47 5-6 1997 10 14 15 23 1 Valnerina 786 5.62 1997 11 09 19 07 3 Valnerina 4-5 180 4.87 1998 02 16 13 45 1 Valnerina NF 33 3.75 1998 03 21 16 45 0 Appennino umbro-marchigiano 4 141 5.00 1998 04 05 15 52 2 Appennino umbro-marchigiano 4-5 395 4.78 2 1998 08 15 05 18 0 Reatino 233 5-6 4.42 1999 10 10 15 35 5 Alto Reatino 4-5 4.21 1999 11 29 03 20 3 Monti della Laga 5-6 4.15 2000 12 16 07 31 0 Ternano 5-6 4.29 NF 2004 12 09 02 44 2 Teramano 5 4.09 213 NF 2005 12 15 13 28 3 Val Nerina 5 4.14 Int 10 9 8 7 1700 1000 1100 1200 1300 1400 1500 1600 1800 1900 2000 Località vicine (entro 10km) Località EQs Distanza (km) Casanova San Giovanni Piedelpoggio Vallunga Villa Pulcini Volciano Sala Rescia Albaneto San Giovinale Ruscio Sant'Angelo

http://emidius.mi.ingv.it/CPTI15-DBMI15/query_place/

Sismicità recente dell'area in studio

In questo capitolo vengono riportati i dati presi da "QUEST - Rilievo macrosismico per i terremoti nell'Italia centrale. Aggiornamento dopo le scosse del 26 e 30 ottobre 2016, Aggiornamento al 21 dicembre 2016 dell'INGV-ENEA.

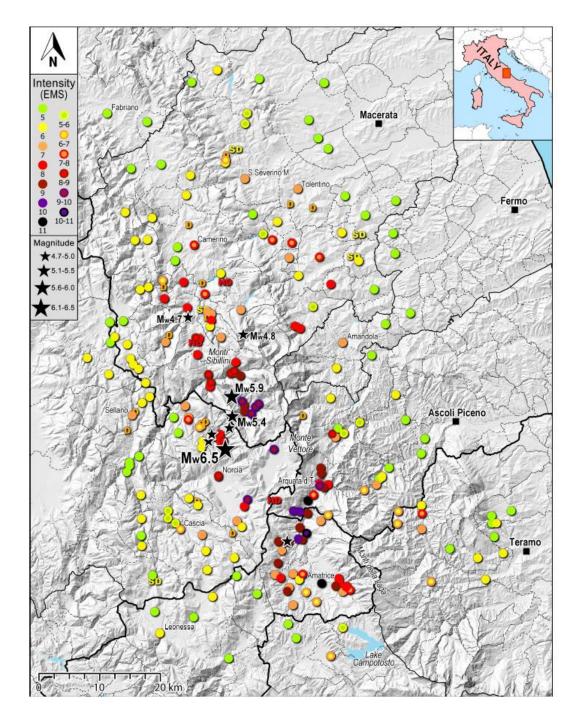


Figura 3 - Mappa delle intensità EMS98 valutate per i terremoti del 26 e 30 ottobre 2016. Le stelle indicano eventi avvenuti dopo il 26 ottobre 2016 con magnitudo maggiore o uguale a 4.7.

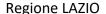


Tabella 1 - Elenco delle località rilevate dopo la scossa del 30 ottobre, e relative intens macrosismiche in scala EMS98 e MCS (aggiornamento 21 dicembre 2016). Con SD (danno liev D (danno) o HD (danno grave) si indica un danno generico ad una frazione troppo piccola poter assegnare l'intensità o in un singolo edificio isolato. I valori di intensità assegnati potrebbe subire variazioni.

Località	Comune	Prov	Lat	Lon	EMS	MCS
Amatrice	Amatrice	RI	42.628	13.290	11	11
Pescara del Tronto	Arquata del Tronto	AP	42.751	13.271	11	11
Illica	Accumoli	RI	42.703	13.265	10-11	10-11
Accumoli	Accumoli	RI	42.695	13.248	10	10
Capodacqua	Arquata del Tronto	AP	42.737	13.241	10	10-11
Tufo	Arquata del Tronto	AP	42.735	13.254	10	10
Arquata del Tronto	Arquata del Tronto	AP	42.772	13.296	9-10	10
Castelluccio	Norcia	PG	42.828	13.208	9-10	9-10
Gualdo	Castelsantangelo sul Nera	MC	42.882	13.166	9-10	10
Macchie	Castelsantangelo sul Nera	MC	42.896	13.182	9-10	9-10
Nocria	Castelsantangelo sul Nera	MC	42.901	13.149	9-10	9-10
San Pellegrino	Norcia	PG	42.757	13.150	9-10	10
Vallinfante	Castelsantangelo sul Nera	MC	42.892	13.175	9-10	9-10
Castelsantangelo sul Nera	Castelsantangelo sul Nera	MC	42.895	13.153	9	9
Colleposta	Accumoli	RI	42.661	13.205	9	9
Faete	Arquata del Tronto	AP	42.769	13.305	9	9
Fonte del Campo	Accumoli	RI	42.694	13.256	9	9-10
Grisciano	Accumoli	RI	42.732	13.269	9	9
Nocelleto	Castelsantangelo sul Nera	MC	42.886	13.153	9	9-10
Piedilama	Arquata del Tronto	AP	42.789	13.301	9	9
Pretare	Arquata del Tronto	AP	42.797	13.300	9	9-10
Retrosi	Amatrice	RI	42.623	13.318	9	10
San Giovanni	Accumoli	RI	42.693	13.208	9	9
Sorbo	Ussita	MC	42.939	13.148	9	9
Tino	Accumoli	RI	42.712	13.252	9	9
Torrita	Amatrice	RI	42.619	13.221	9	9
Accatti	Pieve Torina	MC	42.991	13.060	HD	HD
Collevecchio	Fiastra	MC	43.078	13.126	HD	HD
Forca Canapine	Arquata del Tronto	AP	42.754	13.203	HD	HD
Capo del Colle	Norcia	PG	42.844	13.108	8-9	8-9
Casavecchia Alta	Pieve Torina	MC	42.998	13.062	8-9	9
Castro	Montegallo	AP	42.846	13.327	8-9	9
Norcia	Norcia	PG	42.793	13.094	8-9	8-9
Sasso	Ussita	MC	42.943	13.129	8-9	8-9
Tempori	Ussita	MC	42.946	13.136	8-9	8-9
Villa Sant'Antonio	Visso	MC	42.943	13.084	8-9	8-9
Visso	Visso	MC	42.931	13.088	8-9	8-9
Aschio	Visso	MC	42.973	13.064	8	8

Borgo	Arquata del Tronto	AP	42.775		8	8
Borgo San Giovanni	Visso	MC		13.086	8	8
Campi Alto	Norcia	PG	42.854	13.101	8	8
Campi Basso	Norcia	PG	42.850	13.093	8	8
Capricchia	Amatrice	RI	42.622	13.340	8	8
Colli di Casavecchia	Pieve Torina	MC	42.997	13.069	8	8-9
Cossara	Amatrice	RI	42.626	13.324	8	8
Frascaro	Norcia	PG	42.747	13.143	8	8
Giampereto	Sarnano	MC	43.004	13.273	8	8
Gualdo	Gualdo	MC	43.067	13.339	8	8
Massaprofoglio	Muccia	MC	43.058	13.003	8	7-8
Moletano	Amatrice	RI	42.628	13.325	8	8
Muccia	Muccia	MC	43.081	13.043	8	7-8
Nemi	Fiordimonte	MC	43.023	13.095	8	8
Pasciano	Amatrice	RI	42.639	13.209	8	8
Pie' del Colle	Norcia	PG	42.844	13.102	8	8-9
Pieve Torina	Pieve Torina	MC	43.043	13.048	8	7-8
Piobbico	Sarnano	MC	43.008	13.263	8	8
Sant'Angelo	Norcia	PG	42.839	13.103	8	7-8
Trisungo	Arquata del Tronto	AP	42.773	13.313	8	8
Ussita (Pieve)	Ussita	MC	42.944	13.136	8	8
Vallestretta	Ussita	MC	42.959	13.140	8	7-8
Villanova	Accumoli	RI	42.691	13.228	8	8
Voceto	Amatrice	RI	42.634	13.325	8	9
Caldarola	Caldarola	MC	43.137	13.226	7-8	7-8
Camerino	Camerino	MC	43.135	13.068	7-8	7-8
Camporotondo di	Camporotondo di	NAC	42 121	12.205	7.0	7.0
Fiastrone	Fiastrone	MC	43.131	13.265	7-8	7-8
Castel Trione	Amatrice	RI	42.620	13.339	7-8	7-8
Fornisco	Valle Castellana	TE	42.723	13.498	7-8	8
Pievebovigliana	Pievebovigliana	MC	43.062	13.085	7-8	8
Preci	Preci	PG	42.878	13.039	7-8	7-8
Preta	Amatrice	RI	42.616	13.346	7-8	7-8
San Ginesio	San Ginesio	MC	43.108	13.319	7-8	7-8
Santa Giusta	Amatrice	RI	42.643	13.253	7-8	8
Vezzano	Arquata del Tronto	AP	42.759	13.283	7-8	7-8
Acquasanta Terme	Acquasanta Terme	AP	42.769	13.410	7	7
Alfi	Fiordimonte	MC	43.032	13.096	7	7
Amandola	Amandola	FM	42.980	13.357	7	7
Cessapalombo	Cessapalombo	MC	43.109	13.258	7	7-8
Collegentilesco	Amatrice	RI	42.624	13.225	7	7-8
Collemoresco	Amatrice	RI	42.644	13.234	7	7-8
Cornillo Nuovo	Amatrice	RI	42.614	13.332	7	7
Cupi	Visso	MC	42.997	13.113	7	7
Fiastra (Trebbio)	Fiastra	MC	43.036	13.156	7	7-8
	•					

Fiordimonte MC 43.036 13.088 7 7-8
Maltignano Cascia PG 42.708 13.056 7 7 Monte Cavallo (Piè del Sasso) Monte Cavallo MC 42.994 13.001 7 7 Montegallo (Balzo) Montegallo AP 42.841 13.333 7 7 Pascellata Valle Castellana TE 42.700 13.496 7 6-7 Poggio d'Api Accumoli RI 42.720 13.295 7 7 Saccovescio Preci PG 42.898 13.034 7 6-7 San Severino Marche MC 43.229 13.177 7 7 7 San Severino Marche MC 43.229 13.177 7
Monte Cavallo (Piè del Sasso) Monte Cavallo MC 42.994 13.001 7 7 Montegallo (Balzo) Montegallo AP 42.841 13.333 7 7 Pascellata Valle Castellana TE 42.700 13.496 7 6-7 Poggio d'Api Accumoli RI 42.720 13.295 7 7 Saccovescio Preci PG 42.898 13.034 7 6-7 San Severino Marche MC 43.229 13.177 7 7 Savelli Norcia PG 42.898 13.231 7 7 Savelli Norcia PG 42.726 13.127 7 7 Savelli Norcia PG 42.888 12.297 7 7 Savelli Norcia RI 42.598 13.231 7 7 Savelli Norcia RI 42.888 12.927 7 7 7 Sellano PG
Sasso) Monte Cavallo MC 42.994 13.001 7 7 Montegallo (Balzo) Montegallo AP 42.841 13.333 7 7 Pascellata Valle Castellana TE 42.700 13.496 7 6-7 Poggio d'Api Accumoli RI 42.720 13.295 7 7 Saccovescio Preci PG 42.898 13.034 7 6-7 San Severino Marche MC 43.229 13.177 7 7 Savelli Norcia PG 42.726 13.127 7 7 Scai Amatrice RI 42.598 13.231 7 7 Sellano PG 42.888 12.927 7 7 Terracino Accumoli RI 42.679 13.214 7 7 Tolentino MC 43.210 13.283 7 7 Borgo Preci Preci PG 42.881 13.040
Pascellata Valle Castellana TE 42.700 13.496 7 6-7 Poggio d'Api Accumoli RI 42.720 13.295 7 7 Saccovescio Preci PG 42.898 13.034 7 6-7 San Severino Marche MC 43.229 13.177 7 7 Savelli Norcia PG 42.726 13.127 7 7 Scai Amatrice RI 42.598 13.231 7 7 Sellano PG 42.888 12.927 7 7 Terracino Accumoli RI 42.679 13.214 7 7 Tolentino MC 43.210 13.283 7 7 Borgo Preci Preci PG 42.881 13.040 6-7 6-7 Capitignano Capitignano AQ 42.520 13.301 6-7 6-7 Colle Arquata del Tronto AP 42.728 13.310
Poggio d'Api Accumoli RI 42.720 13.295 7 7 Saccovescio Preci PG 42.898 13.034 7 6-7 San Severino Marche MC 43.229 13.177 7 7 Savelli Norcia PG 42.726 13.127 7 7 Scai Amatrice RI 42.598 13.231 7 7 Sellano Sellano PG 42.888 12.927 7 7 Terracino Accumoli RI 42.679 13.214 7 7 Tolentino MC 43.210 13.283 7 7 Borgo Preci Preci PG 42.881 13.040 6-7 6-7 Capitignano Capitignano AQ 42.520 13.301 6-7 6-7 Colle Arquata del Tronto AP 42.728 13.310 6-7 6-7 Collecreta Amatrice RI 42.629
Saccovescio Preci PG 42.898 13.034 7 6-7 San Severino Marche San Severino Marche MC 43.229 13.177 7 7 Savelli Norcia PG 42.726 13.127 7 7 Scai Amatrice RI 42.598 13.231 7 7 Sellano PG 42.888 12.927 7 7 Terracino Accumoli RI 42.679 13.214 7 7 Tolentino MC 43.210 13.283 7 7 Borgo Preci Preci PG 42.881 13.040 6-7 6-7 Capitignano Capitignano AQ 42.520 13.301 6-7 6-7 Colle Arquata del Tronto AP 42.718 13.310 6-7 6-7 Collecreta Amatrice RI 42.629 13.325 6-7 6 Cortino Cortino TE 42.622
Saccovescio Preci PG 42.898 13.034 7 6-7 San Severino Marche San Severino Marche MC 43.229 13.177 7 7 Savelli Norcia PG 42.726 13.127 7 7 Scai Amatrice RI 42.598 13.231 7 7 Sellano PG 42.888 12.927 7 7 Terracino Accumoli RI 42.679 13.214 7 7 Tolentino MC 43.210 13.283 7 7 Borgo Preci Preci PG 42.881 13.040 6-7 6-7 Capitignano Capitignano AQ 42.520 13.301 6-7 6-7 Colle Arquata del Tronto AP 42.718 13.310 6-7 6-7 Collecreta Amatrice RI 42.629 13.325 6-7 6 Cortino Cortino TE 42.622
Savelli Norcia PG 42.726 13.127 7 7 Scai Amatrice RI 42.598 13.231 7 7 Sellano PG 42.888 12.927 7 7 Terracino Accumoli RI 42.679 13.214 7 7 Tolentino MC 43.210 13.283 7 7 Borgo Preci PG 42.881 13.040 6-7 6-7 Capitignano Capitignano AQ 42.520 13.301 6-7 6-7 Cascia Cascia PG 42.718 13.013 6-7 6-7 Colle Arquata del Tronto AP 42.728 13.310 6-7 6-7 Collecreta Amatrice RI 42.629 13.325 6-7 6-7 Cortino Cortino TE 42.622 13.509 6-7 6-7 Gelagna Alta Serravalle di Chienti MC 43.085 13.001
Scai Amatrice RI 42.598 13.231 7 7 Sellano PG 42.888 12.927 7 7 Terracino Accumoli RI 42.679 13.214 7 7 Tolentino MC 43.210 13.283 7 7 Borgo Preci Preci PG 42.881 13.040 6-7 6-7 Capitignano Capitignano AQ 42.520 13.301 6-7 6 Cascia Cascia PG 42.718 13.013 6-7 6-7 Colle Arquata del Tronto AP 42.728 13.310 6-7 6-7 Collecreta Amatrice RI 42.629 13.325 6-7 6 Configno Amatrice RI 42.616 13.258 6-7 6-7 Gelagna Alta Serravalle di Chienti MC 43.085 13.001 6-7 6-7 Morrice Valle Castellana TE
Sellano PG 42.888 12.927 7 7 Terracino Accumoli RI 42.679 13.214 7 7 Tolentino MC 43.210 13.283 7 7 Borgo Preci PG 42.881 13.040 6-7 6-7 Capitignano Capitignano AQ 42.520 13.301 6-7 6 Cascia Cascia PG 42.718 13.013 6-7 6-7 Colle Arquata del Tronto AP 42.728 13.310 6-7 6-7 Collecreta Amatrice RI 42.629 13.325 6-7 6 Configno Amatrice RI 42.616 13.258 6-7 6-7 Cortino Cortino TE 42.622 13.509 6-7 6-7 Gelagna Alta Serravalle di Chienti MC 43.085 13.001 6-7 6-7 Morrice Valle Castellana TE 42.728
Terracino Accumoli RI 42.679 13.214 7 7 Tolentino MC 43.210 13.283 7 7 Borgo Preci Preci PG 42.881 13.040 6-7 6-7 Capitignano AQ 42.520 13.301 6-7 6 Cascia Cascia PG 42.718 13.013 6-7 6-7 Colle Arquata del Tronto AP 42.728 13.310 6-7 6-7 Collecreta Amatrice RI 42.629 13.325 6-7 6 Configno Amatrice RI 42.616 13.258 6-7 6-7 Cortino TE 42.622 13.509 6-7 6-7 Gelagna Alta Serravalle di Chienti MC 43.085 13.001 6-7 6-7 Morrice Valle Castellana TE 42.728 13.451 6-7 6-7 Nommisci Amatrice RI 42.601
Tolentino Tolentino MC 43.210 13.283 7 7 Borgo Preci Preci PG 42.881 13.040 6-7 6-7 Capitignano AQ 42.520 13.301 6-7 6 Cascia PG 42.718 13.013 6-7 6-7 Colle Arquata del Tronto AP 42.728 13.310 6-7 6-7 Collecreta Amatrice RI 42.629 13.325 6-7 6 Configno Amatrice RI 42.616 13.258 6-7 6-7 Cortino TE 42.622 13.509 6-7 6-7 Gelagna Alta Serravalle di Chienti MC 43.085 13.001 6-7 6-7 Morrice Valle Castellana TE 42.728 13.451 6-7 6-7 Nommisci Amatrice RI 42.601 13.278 6-7 6-7
Borgo Preci Preci PG 42.881 13.040 6-7 6-7 Capitignano Capitignano AQ 42.520 13.301 6-7 6 Cascia Cascia PG 42.718 13.013 6-7 6-7 Colle Arquata del Tronto AP 42.728 13.310 6-7 6-7 Collecreta Amatrice RI 42.629 13.325 6-7 6 Configno Amatrice RI 42.616 13.258 6-7 6-7 Cortino Cortino TE 42.622 13.509 6-7 6-7 Gelagna Alta Serravalle di Chienti MC 43.085 13.001 6-7 6-7 Morrice Valle Castellana TE 42.728 13.451 6-7 6-7 Nommisci Amatrice RI 42.601 13.278 6-7 6-7
Capitignano Capitignano AQ 42.520 13.301 6-7 6 Cascia Cascia PG 42.718 13.013 6-7 6-7 Colle Arquata del Tronto AP 42.728 13.310 6-7 6-7 Collecreta Amatrice RI 42.629 13.325 6-7 6 Configno Amatrice RI 42.616 13.258 6-7 6-7 Cortino TE 42.622 13.509 6-7 6-7 Gelagna Alta Serravalle di Chienti MC 43.085 13.001 6-7 6-7 Morrice Valle Castellana TE 42.728 13.451 6-7 6-7 Nommisci Amatrice RI 42.601 13.278 6-7 6-7
Cascia PG 42.718 13.013 6-7 6-7 Colle Arquata del Tronto AP 42.728 13.310 6-7 6-7 Collecreta Amatrice RI 42.629 13.325 6-7 6 Configno Amatrice RI 42.616 13.258 6-7 6-7 Cortino TE 42.622 13.509 6-7 6-7 Gelagna Alta Serravalle di Chienti MC 43.085 13.001 6-7 6-7 Morrice Valle Castellana TE 42.728 13.451 6-7 6-7 Nommisci Amatrice RI 42.601 13.278 6-7 6-7
Colle Arquata del Tronto AP 42.728 13.310 6-7 6-7 Collecreta Amatrice RI 42.629 13.325 6-7 6 Configno Amatrice RI 42.616 13.258 6-7 6-7 Cortino Cortino TE 42.622 13.509 6-7 6-7 Gelagna Alta Serravalle di Chienti MC 43.085 13.001 6-7 6-7 Morrice Valle Castellana TE 42.728 13.451 6-7 6-7 Nommisci Amatrice RI 42.601 13.278 6-7 6-7
Collecreta Amatrice RI 42.629 13.325 6-7 6 Configno Amatrice RI 42.616 13.258 6-7 6-7 Cortino TE 42.622 13.509 6-7 6-7 Gelagna Alta Serravalle di Chienti MC 43.085 13.001 6-7 6-7 Morrice Valle Castellana TE 42.728 13.451 6-7 6-7 Nommisci Amatrice RI 42.601 13.278 6-7 6-7
Configno Amatrice RI 42.616 13.258 6-7 6-7 Cortino TE 42.622 13.509 6-7 6-7 Gelagna Alta Serravalle di Chienti MC 43.085 13.001 6-7 6-7 Morrice Valle Castellana TE 42.728 13.451 6-7 6-7 Nommisci Amatrice RI 42.601 13.278 6-7 6-7
Cortino TE 42.622 13.509 6-7 6-7 Gelagna Alta Serravalle di Chienti MC 43.085 13.001 6-7 6-7 Morrice Valle Castellana TE 42.728 13.451 6-7 6-7 Nommisci Amatrice RI 42.601 13.278 6-7 6-7
Gelagna Alta Serravalle di Chienti MC 43.085 13.001 6-7 6-7 Morrice Valle Castellana TE 42.728 13.451 6-7 6-7 Nommisci Amatrice RI 42.601 13.278 6-7 6-7
Morrice Valle Castellana TE 42.728 13.451 6-7 6-7 Nommisci Amatrice RI 42.601 13.278 6-7 6-7
Nommisci Amatrice RI 42.601 13.278 6-7 6-7
Piedivalle Preci PG 42.866 13.061 6-7 6-7
1
Pietralta Valle Castellana TE 42.710 13.448 6-7 7
Quintodecimo Acquasanta Terme AP 42.762 13.385 6-7 7
Stigliano Piede San Severino Marche MC 43.258 13.140 6-7 6-7
Acquaro Preci PG 42.867 13.067 D D
Arciano Fiordimonte MC 43.027 13.087 D D
Canepina Camerino MC 43.165 13.059 D D
Castel Santa Maria Cascia PG 42.708 13.117 D D
Colle Bianco Monte Cavallo MC 43.004 13.009 D D
Colle di Avendita Cascia PG 42.758 13.049 D D
Foce Montemonaco AP 42.875 13.270 D D
Gelagna Bassa Serravalle di Chienti MC 43.075 13.002 D 6
Le Grazie Tolentino MC 43.188 13.266 D D
Martinelli San Severino Marche MC 43.265 13.141 D D
Montesanto Sellano PG 42.893 12.934 D D
Paterno Tolentino MC 43.181 13.311 D D
Pontelatrave Pievebovigliana MC 43.078 13.081 D 6-7
Postignano Sellano PG 42.866 12.916 D 6
Sant'Eutizio Preci PG 42.871 13.065 D D

Valle	Preci	PG	42.873	13.074	D	D
Abeto	Preci	PG	42.836	13.063	6	6
Agolla	Sefro	MC	43.146	12.974	6	6
Agriano	Norcia	PG	42.763	13.033	6	6
Apiro	Apiro	MC	43.391	13.132	6	5-6
Avendita	Cascia	PG	42.752	13.050	6	6
Bavareto	Serravalle di Chienti	MC	43.076	12.972	6	5-6
Belforte del Chienti	Belforte del Chienti	MC	43.163	13.238	6	6
Casenove	Foligno	PG	42.976	12.842	6	6
Castel San Giovanni	Cascia	PG	42.684	13.062	6	6
Castelraimondo	Castelraimondo	MC	43.209	13.057	6	6
Cesi	Serravalle di Chienti	MC	43.005	12.899	6	5-6
Chiavano	Cascia	PG	42.656	13.063	6	6
Civita	Cascia	PG	42.672	13.118	6	6
Collecurti	Serravalle di Chienti	MC	42.963	12.934	6	6
Collicelli	Campli	TE	42.703	13.646	6	6
Costa	Serravalle di Chienti	MC	42.993	12.924	6	6
Fiuminata (Massa)	Fiuminata	MC	43.188	12.932	6	6
Forcella	Serravalle di Chienti	МС	42.956	12.944	6	6
Gagliole	Gagliole	MC	43.238	13.067	6	6
Leonessa	Leonessa	RI	42.566	12.962	6	6
Montefortino	Montefortino	FM	42.943	13.342	6	6
Montemonaco	Montemonaco	AP	42.899	13.327	6	6
Morichella	San Ginesio	MC	43.082	13.275	6	6
Paggese	Acquasanta Terme	AP	42.780	13.422	6	6
Palmiano	Palmiano	AP	42.899	13.458	6	5-6
Piaggia	Sellano	PG	42.914	12.964	6	6
Pioraco	Pioraco	MC	43.178	12.986	6	6
Polverina	Fiastra	MC	43.091	13.119	6	6
Rasenna	Visso	MC	42.935	12.957	6	6
Ripe San Ginesio	Ripe San Ginesio	MC	43.142	13.367	6	6
Roccatamburo	Poggiodomo	PG	42.736	12.936	6	6
Rocchetta	Cerreto di Spoleto	PG	42.771	12.937	6	6
San Giorgio	Amatrice	RI	42.635	13.246	6	6-7
San Marco	Norcia	PG	42.717	13.136	6	6-7
San Martino	Serravalle di Chienti	MC	42.972	12.929	6	6
Sant'Angelo in Pontano	Sant'Angelo in Pontano	MC	43.099	13.398	6	6
Santo Stefano	Torricella Sicura	TE	42.653	13.605	6	6
Sefro	Sefro	MC	43.146	12.949	6	6
Serravalle di Chienti	Serravalle di Chienti	MC	43.073	12.955	6	6
Setri	Sellano	PG	42.906	12.948	6	6
Stigliano Capo	San Severino Marche	MC	43.254	13.139	6	6
Taro	Fiordimonte	MC	43.014	13.092	6	6
Terzone	Leonessa	RI	42.616	13.071	6	6

Todiano	Preci	PG	42.845	13.066	6	6-7
Torricella Sicura	Torricella Sicura	TE		13.656	6	6
Usigni	Poggiodomo	PG	42.696	12.934	6	6
Valle Castellana	Valle Castellana	TE	42.735	13.498	6	6
Valle San Giovanni	Teramo	TE	42.621	13.618	6	6
Verchiano	Foligno	PG	42.950	12.884	6	6
L'Immacolata	Sant'Angelo in Pontano	MC	43.106	13.387	SD	SD
Ruscio	Monteleone di Spoleto	PG	42.643	12.956	SD	SD
San Lorenzo	Loro Piceno	MC	43.138	13.400	SD	SD
San Mauro	San Severino Marche	MC	43.273	13.160	SD	SD
Villanova di Sopra	Fiordimonte	MC	43.039	13.079	SD	SD
Atri	Cascia	PG	42.727	13.004	5-6	5-6
Bisignano	Montegallo	AP	42.846	13.350	5-6	5-6
Caccamo sul Lago	Serrapetrona	MC	43.146	13.208	5-6	5-6
Colcerasa	Cingoli	MC	43.325	13.188	5-6	5-6
Giappiedi	Cascia	PG	42.735	12.989	5-6	5-6
Poggio Cancelli	Campotosto	AQ	42.561	13.328	5-6	5-6
Poggio Primocaso	Cascia	PG	42.746	12.990	5-6	5-6
Sarnano	Sarnano	MC	43.035	13.301	5-6	5-6
Serralta	San Severino Marche	MC	43.310	13.183	5-6	5-6
Uscerno	Montegallo	AP	42.861	13.383	5-6	5-6
Appignano	Appignano	MC	43.364	13.347	5	5
Battaglia	Campli	TE	42.714	13.637	5	5
Borgo Cerreto	Cerreto di Spoleto	PG	42.814	12.917	5	5
Castiglione	Montereale	AQ	42.570	13.219	5	5
Cerreto d'Esi	Cerreto d'Esi	AN	43.320	12.985	5	5
Cerreto di Spoleto	Cerreto di Spoleto	PG	42.819	12.917	5	5-6
Cingoli	Cingoli	MC	43.375	13.216	5	5-6
Cittareale	Cittareale	RI	42.617	13.160	5	5
Colfiorito	Foligno	PG	43.027	12.891	5	5-6
Comunanza	Comunanza	AP	42.959	13.414	5	5-6
Cona Faiete	Rocca Santa Maria	TE	42.669	13.550	5	5-6
Corneto	Acquasanta Terme	AP	42.792	13.437	5	5
Corone	Preci	PG	42.882	13.010	5	5
Esanatoglia	Esanatoglia	MC	43.252	12.948	5	5
Fabriano	Fabriano	AN	43.335	12.905	5	5
Falerone	Falerone	FM	43.107	13.472	5	5-6
Fraia	Foligno	PG	42.997	12.890	5	5
Loro Piceno	Loro Piceno	MC	43.166	13.416	5	5-6
Magnanella Inferiore	Teramo	TE	42.683	13.640	5	6
Matelica	Matelica	MC	43.256	13.009	5	5
Mogliano	Mogliano	MC	43.185	13.479	5	5
Montappone	Montappone	FM	43.137	13.470	5	5
Monteleone di Spoleto	Monteleone di Spoleto	PG	42.652	12.953	5	5
•	· · · · · · · · · · · · · · · · · · ·		•			

Morro Camerino MC 43.113 13.028 5 Mozzano Ascoli Piceno AΡ 42.832 13.512 5-6 5 Nocella Campli ΤE 42.720 13.677 5 6 Passo di Treia Treia 43.283 13.329 5 5 MC Penna San Giovanni Penna San Giovanni 43.056 13.426 5 5 MC Piano Montegallo AΡ 42.854 13.339 5 5 43.375 13.079 5 5 Poggio San vicino Poggio San vicino MC 5 Poggiodomo Poggiodomo PG 42.711 12.934 5 Pollenza Pollenza MC 43.267 13.348 5 5 Ponte Cerreto di Spoleto PG 42.805 12.911 5 5 Posta Posta RΙ 42.524 13.097 5 5-6 Raggiano Camerino MC 43.133 13.034 5 5 Roccafluvione (Marsia) 5 5 Roccafluvione AΡ 42.861 13.475 Roccanolfi Preci PG 42.859 13.018 5 5-6 42.703 13.637 Roiano ΤE 5 5-6 Campli Santa Maria 42.777 13.416 Acquasanta Terme AΡ 5 5 Santa Vittoria Montereale AQ 42.549 13.234 5 5-6 Santa Vittoria in Santa Vittoria in FΜ 43.018 13.496 5 5-6 Matenano Matenano Serrapetrona Serrapetrona MC 43.176 13.189 5 5 Smerillo Smerillo 43.004 13.445 5 5 FM Taverna di Mezzo Ascoli Piceno AΡ 42.810 13.503 5 5 Taverne Serravalle di Chienti MC 43.028 12.918 5 5 Treia Treia MC 43.311 13.312 5 5 42.645 13.121 Trimezzo Cittareale 5 5-6 RΙ Triponzo Cerreto di Spoleto PG 42.827 12.937 5 5-6 5 5 Urbisaglia Urbisaglia MC 43.196 13.377 VIIIa Gizzi 42.598 12.954 Leonessa RΙ 5 5 Vindoli Leonessa RΙ 42.587 13.031 5 5-6

In questo capitolo vengono riportati anche i dati presi da "QUEST - Rilievo macrosismico per i terremoti nell'Italia centrale. Aggiornamento dopo le scosse del 18 gennaio 2017, dell'INGV-ENEA.

Da entrambi i rapporti, è possibile vedere che Leonessa è stata interessata nella sequenza sismica di Amatrice – Norcia - Campotosto da un'intensità macrosismica pari a 6 MCS.

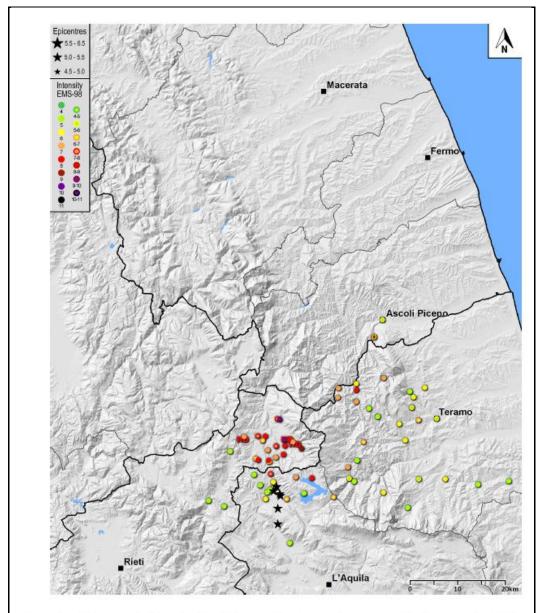


Figura 1 - Mappa relativa alle località investigate per le scosse del 18 gennaio 2017.

Località	Comune	Prov	Lat	Lon	MCS	EMS
Cossito	Amatrice	RI	42.674	13.293	9-10	9-10
Prato	Amatrice	RI	42.634	13.303	9-10	9-10
Preta	Amatrice	RI	42.616	13.346	8-9	9
Aleggia	Amatrice	RI	42.639	13.193	HD	HD
Cascello	Amatrice	RI	42.635	13.309	HD	HD
Ferrazza	Amatrice	RI	42.625	13.329	HD	HD
Collepagliuca	Amatrice	RI	42.634	13.314	9	8-9
Cornelle di Sotto	Amatrice	RI	42.596	13.259	9	8
Arafranco Pinaco	Amatrice	RI	42.606	13.298	8	8
Fornisco	Valle Castellana	TE	42.723	13.498	8	8
Santa Giusta	Amatrice	RI	42.643	13.253	8	8
Scai	Amatrice	RI	42.598	13.231	8	8
Campotosto	Campotosto	AQ	42.558	13.369	7-8	8

Mascioni

Santa Vittoria

Pizzoli

Posta

Borbona

Castiglione

San Cipriano	Amatrice	RI	42.623	13.303	7-8	8
Collalto	Amatrice	RI	42.675	13.287	8	7-8
Musicchio	Amatrice	RI	42.623	13.280	8	7-8
Santa Lucia	Montereale	AQ	42.570	13.262	7-8	7-8
Collemoresco	Amatrice	RI	42.644	13.234	7	7-8
Poggio Cancelli	Campotosto	AQ	42.561	13.328	7-8	7
Collecreta	Amatrice	RI	42.629	13.325	7	7
Configno	Amatrice	RI	42.616	13.258	7	7
Forcelle	Amatrice	RI	42.644	13.198	7	7
Frattoli	Crognaleto	TE	42.575	13.465	7	7
Morrice	Valle Castellana	TE	42.728	13.451	7	7
Nommisci	Amatrice	RI	42.601	13.278	7	7
Pascellata	Valle Castellana	TE	42.700	13.496	7	7
Pietralta	Valle Castellana	TE	42.710	13.448	7	7
Macchia da Sole	Valle Castellana	TE	42.743	13.571	6-7	7
Capitignano	Capitignano	AQ	42.520	13.301	6-7	6-7
Cortino	Cortino	TE	42.622	13.509	6-7	6-7
Ortolano	Campotosto	AQ	42.519	13.423	6-7	6-7
San Giorgio	Amatrice	RI	42.635	13.246	6-7	6-7
Torricella Sicura	Torricella Sicura	TE	42.658	13.656	6-7	6-7
Varoni	Amatrice	RI	42.601	13.225	6-7	6-7
Castel Trosino	Ascoli Piceno	AP	42.823	13.552	D	D
Cornelle di Sopra	Amatrice	RI	42.594	13.261	D	D
Valle San Giovanni	Teramo	TE	42.621	13.618	6-7	6
Aringo	Montereale	AQ	42 554	13.268	6	6
Castel Castagna	Castel Castagna	TE		13.717	6	6
Collicelli	Campli	TE	42.703	13.646	6	6
Montereale	Montereale	AQ	42.522	13.246	6	6
Località	Comune	Prov	lat I	Lon	MCS	EMS
Nocella		TE	42.720		6	6
Pietracamela	Campli Pietracamela	TE	42.720		6	6
Santo Stefano	Torricella Sicura				6	6
Valle Castellana	Valle Castellana	-	42.653		6	6
		TE	42.735 42.683		6	5-6
Magnanella Inferiore	Teramo				-	
Tottea	Crognaleto	TE	42.553		6	5-6
Ascoli Piceno	Ascoli Piceno		42.855		5-6	5-6
Teramo	Teramo		42.659		5-6	5-6
Tossicia	Tossicia	TE	42.545		5-6	5-6
Battaglia	Campli	TE	42.714		5-6	5
Bisenti	Bisenti		42.528		5-6	5
Cavagnano	Montereale	AQ	42.540		5-6	5
Cavallari	Montereale		42.535		5-6	5
Cittareale	Cittareale		42.617		5-6	5
Cona Faiete	Rocca Santa Maria		42.669		5-6	5
Crognaleto	Crognaleto		42.587		5-6	5
Fano a Corno	Isola del Gran Sasso d'Italia	TE	42.491	13.615	5-6	5

Tabella 1 - Località investigate e relative intensità macrosismiche per le scosse del 18 gennaio 2017. Le intensità sono assegnate sia in scala MCS che EMS98. Con D e HD si indica rispettivamente Damage (danno) e Heavy Damage (danno grave).

Castiglione Messer Raimondo Castiglione Messer Raimondo TE 42.531 13.882 5

AQ 42.529 13.347 5-6

RI 42.524 13.097

TE 42.547 13.479

TE 42.686 13.528

AQ 42.435 13.303 5-6 5

AQ 42.549 13.234 5-6 5

5

5

RI 42.512 13.137 5

AQ 42.570 13.219 5

Campotosto

Montereale

Montereale

Crognaleto

Rocca Santa Maria (Imposte) Rocca Santa Maria

Borbona

Pizzoli

Posta

Pericolosità sismica di base

Comune di LEONESSA

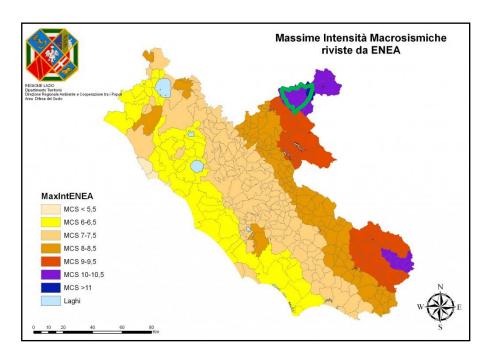
Il territorio comunale di Leonessa è inserito dal 29/04/1915 nella Seconda Categoria della classificazione sismica nazionale con Grado di Sismicità S=9.

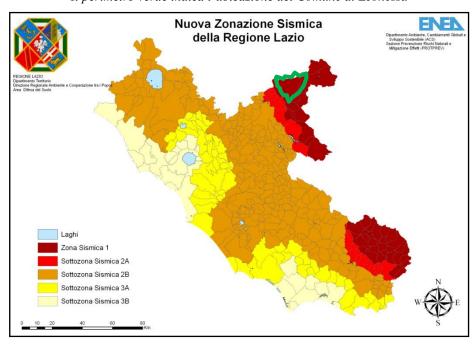
Con l'ordinanza n. 2788 del 12 giugno 1998, la Presidenza del Consiglio di Ministri, Dipartimento della Protezione Civile, ha inserito Leonessa nell'elenco dei Comuni ad elevato rischio sismico con Intensità massima osservata Imax≥10 (MCS) ed Indice di Rischio pari a <u>Ir=0,5991</u>.

L'Ordinanza della Presidenza del Consiglio dei Ministri n. 3274 del 20 marzo 2003 e dalla DGR n. 766 del 01 agosto 2003 sulla riclassificazione sismica del territorio regionale hanno poi inserito Leonessa nella Zona sismica 1.

Attualmente, in virtù della DGR n. 387 del 22 maggio 2009 "Nuova Classificazione Sismica del territorio della Regione Lazio" (pubblicata sul BUR Lazio n. 24 del 27.06.2009 - Supplemento Ordinario n. 106) in applicazione dell'Ordinanza del Presidente del Consiglio Ministri n. 3519 del 28 Aprile 2006 e della DGR Lazio 766/03, il comune di Leonessa è stato classificato nella **Zona Sismica 1**.

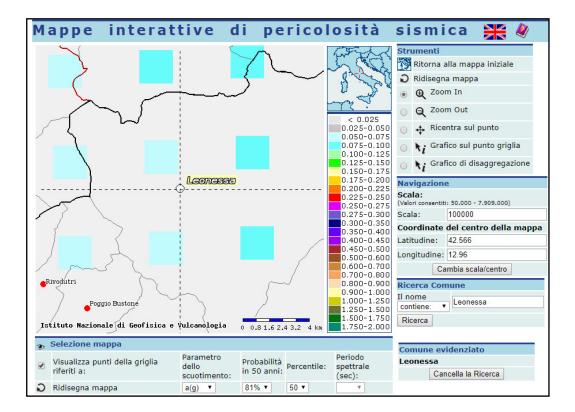
Dalla suddetta DGR si riporta integralmente uno stralcio del testo. "La nuova riclassificazione si basa soltanto su 3 Zone Sismiche a differenza delle quattro della precedente classificazione del 2003, con la scomparsa della zona sismica 4. La Zona Sismica 1, quella più gravosa in termini di pericolosità sismica, non presenta sottozone in quanto il valore di aq max previsto per il Lazio non giustifica ulteriori suddivisioni. Pertanto la creazione di sottozone ha interessato soltanto le zone sismiche 2 e 3, con la suddivisione in 4 sottozone sismiche (dalla 2A, ovvero la maggiore sottozona della zona sismica 2, fino alla sottozona sismica 3B, corrispondente alla sottozona meno pericolosa della zona sismica 3) come si evince dalla Tab. 3. Nella Regione Lazio, infatti, i valori di accelerazione ag dell'elaborato all'84° percentile dell'INGV-DPC sono compresi fra 0.278g e 0.065g, ai quali si possono correlare empiricamente soltanto tre zone sismiche e quattro sottozone, escludendo quindi totalmente la zona sismica 4°.



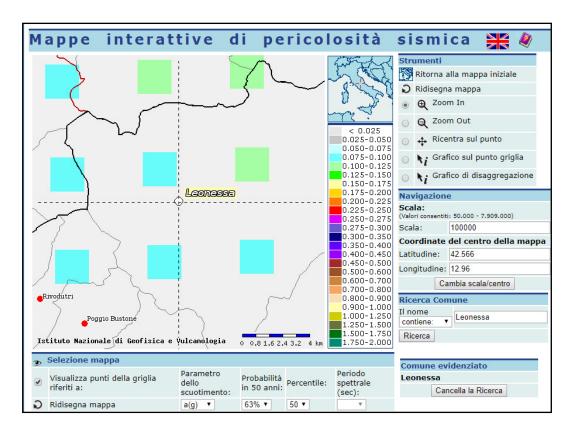


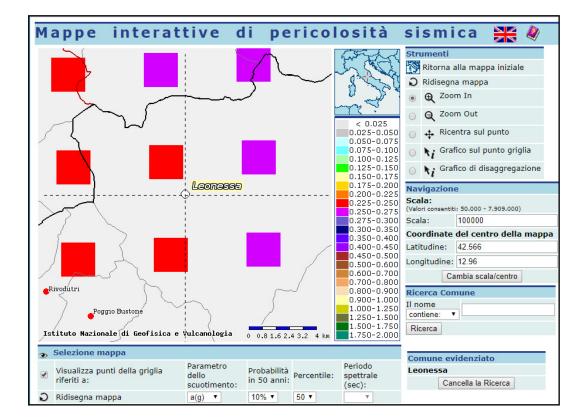
ZONA SISMICA	SOTTOZONA	ACCELERAZIONE CON PROBABILITÀ DI					
	SISMICA	SUPERAMENTO PARI AL 10% IN 50 ANNI (a_g)					
1		0.25 ≤ a _g < 0,278g (val. Max per il Lazio)					
,	A	$0.20 \le a_g \le 0.25$					
	В	$0.15 \le a_g \le 0.20$					
3	A	$0.10 \le a_g \le 0.15$					
,	В	(val. min.) $0.062 \le a_g \le 0.10$					

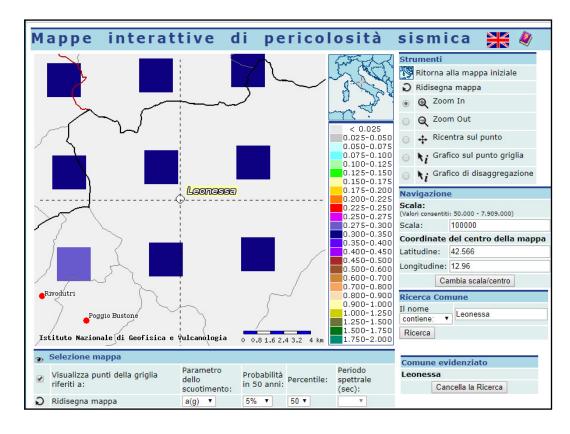
Tabella 3 – Suddivisione delle sottozone sismiche in relazione all'accelerazione di picco su terreno rigido utilizzate per lo scenario di riclassificazione sismica della Regione Lazio.



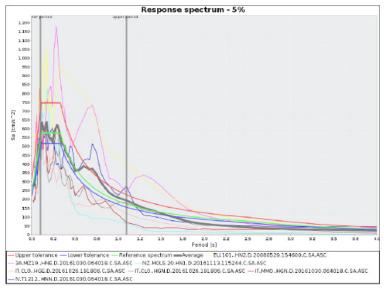
Il perimetro verde indica l'ubicazione del Comune di Leonessa

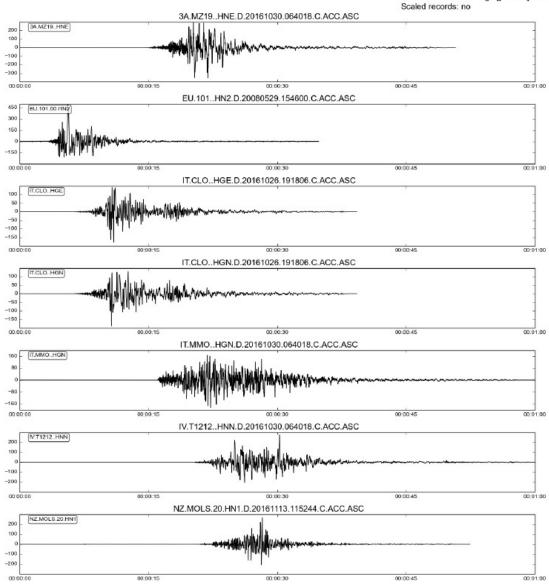



Mappa di pericolosità sismica per Probabilità di superamento nel periodo di riferimento V_R pari all'81% riferito allo Stato Limite di Operatività SLO (Vn=50 anni - Cu=1 - TR=30 anni)


Mappa di pericolosità sismica per Probabilità di superamento nel periodo di riferimento V_R pari al 63% riferito allo Stato Limite di Danno SLD (Vn=50 anni - Cu=1 - TR=50 anni)

Mappa di pericolosità sismica per Probabilità di superamento nel periodo di riferimento V_R pari al 10% riferito allo Stato Limite di Salvaguardia della Vita SLV (Vn=50 anni - Cu=1 - TR=475 anni)


Mappa di pericolosità sismica per Probabilità di superamento nel periodo di riferimento V_R pari al 5% riferito allo Stato Limite di Prevenzione del Collasso SLC (Vn=50 anni - Cu=1 - TR=975 anni)



Tue Jul 18 11:15:43 CEST 2017

Preliminary record search

Station site classification: A,A*
Magnitude min: 5.2
Magnitude max: 6.5
Types of magnitude considered: WL
Epicentral distance min [km]: 0.0
Epicentral distance max [km]: 40.0
Include late trigger events: no
Include analog recordings: yes

Categoria di Sottosuolo

In riferimento alla normativa introdotta con il D.M. Infrastrutture e Trasporti 17/01/2018 sull'Aggiornamento delle "Norme Tecniche per le Costruzioni", al fine della definizione dell'azione sismica di progetto, nel caso in esame la $V_{\mathrm{Seq,30}}$ è stata accertata con 2 prove in foro DOWN-HOLE e con 5 sondaggi sismici verticali MASW appositamente realizzati nel sito, da cui sono emersi i seguenti valori:

```
VS_{eq} = 556 m/sec ± 56 m/sec (MASW 1),
```

 VS_{eq} = 431 m/sec ± 43 m/sec (MASW 2),

 VS_{eq} = 379 m/sec ± 38 m/sec (MASW 3),

 VS_{eq} = 452 m/sec ± 45 m/sec (MASW 4),

 VS_{eq} = 489 m/sec ± 49 m/sec (MASW 5),

 $VS_{eq} = 608 \text{ m/sec (DH 1)},$

 VS_{eq} = 549 m/sec (DH 2).

Substrato Sismico H (Vs > 800 m/sec) intercettato rispettivamente alle profondità di:

H = 16 metri (Masw 1)

H = 10 metri (Masw 2)

H = 10 metri (Masw 3)

H = 13 metri (Masw 4)

H = 12 metri (Masw 5)

H = 19 metri (DH 1)

H = 14 metri (DH 2)

e quindi, come da suddette norme (riferimento § 3.2.2), si ha:

Categoria di sottosuolo di fondazione "B": Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.

La velocità equivalente delle onde $V_{s,eq}$ (in m/s) è definita dall'espressione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$
[3.2.1] con:

h_i spessore (in m) dell'i-esimo strato;

V_{S,i} velocità delle onde di taglio dell'i-esimo strato;

N numero di strati

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzato da Vs non inferiore a 800 m/s.

Essendo presenti delle fondazioni superficiali, la profondità del substrato è stata riferita al piano di imposta delle stesse (3.2.2 norma).

Nel rispetto della norma (3.2.2) che recita Per depositi con profondità H del substrato superiore a 30 m, la velocità equivalente delle onde di taglio $V_{S,eq}$ è definita dal parametro $V_{S,30}$, ottenuto ponendo H=30 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità, nel caso specifico, non trovandosi in queste condizioni, è stata calcolata la VS_{eq} .

Spettro di riposta elastico in accelerazione delle componenti orizzontali

Nelle espressioni dello spettro di risposta elastico in accelerazione delle componenti orizzontali interviene, tra gli altri, il parametro $S = Ss \cdot S_T$ [3.2.3] essendo Ss il coefficiente di amplificazione stratigrafica (Ta, 3.2.IV) e S_T il coefficiente di amplificazione topografica (Tab. 3.2.V).

Amplificazione stratigrafica S_S

Per sottosuolo di categoria A i coefficienti Ss e Cc valgono 1.

Per le categorie di sottosuolo B, C, D ed E i coefficienti Ss e Cc possono essere calcolati, in funzione dei valori di Fo e Tc* relativi al sottosuolo di categoria A, mediante le espressioni fornite nella seguente Tab. 3.2.IV, nelle quali $g = 9.81 \text{ m/s}^2$ è l'accelerazione di gravità ed il tempo T_C* è espresso in secondi.

Tab. 3.2.IV – Espressioni di S_S e di C_C				
Categoria sottosuolo	S _s	C _C		
A	1,00	1,00		
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_{\rm C}^*)^{-0,20}$		
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05\cdot(T_{\rm C}^*)^{-0,33}$		
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	$1,25 \cdot (T_{\rm c}^*)^{-0,50}$		
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15\cdot(T_{C}^{*})^{-0,40}$		

Valori di a_g, Fo e Tc*

Tali valori necessari per la determinazione delle azioni sismiche sono stati elaborati per il sito di interesse, considerando il centro sull'edificio della Scuola dell'Infanzia, con il programma "Spettri NTC ver. 1.0.3" fornito dal Consiglio Superiore Lavori Pubblici sulle seguenti coordinate espresse nel Sistema di riferimento ED50: Longitudine 12,964367° E – Latitudine 42,568052° N. I valori vengono di seguito riportati per i periodi di ritorno T_R di riferimento.

TR	ag	Fo	TC*
[anni]	[g]	[-]	[s]
30	0.074	2.407	0.269
50	0.098	2.324	0.277
72	0.116	2.310	0.284
101	0.135	2.294	0.289
140	0.156	2.297	0.295
201	0.180	2.304	0.309
475	0.248	2.358	0.331
975	0.320	2.402	0.351
2475	0.440	2.433	0.370

Dove è:

ag accelerazione orizzontale massima al sito;

Fo valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale.

Tc* periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Amplificazione topografica S_T

Rientrando il terreno nella **Categoria Topografica T1** (Tabella 3.2.IV della norma), il valore del **Coefficiente di amplificazione topografica** è assunto $S_T = 1,00$ (Tabella 3.2.V della norma).

Stabilità nei confronti della liquefazione

Riguardo alla suscettibilità alla liquefazione (§ 7.11.3.4),

- in riferimento al D.M. (§ 7.11.3.4.2);
- essendo del tutto assente la falda idrica per profondità medie stagionali superiori a
 15 metri dal piano campagna (come accertato con i sondaggi anche fino a 30 metri)
 di cui al punto 2. del suddetto paragrafo;

considerando le caratteristiche litologiche e granulometriche dei terreni in oggetto che risultano esterni alle zone dei fusi granulometrici di terreni suscettibili di liquefazione di cui al punto 5. del suddetto paragrafo;

i depositi di sottofondo risultano esclusi dalla verifica a liquefazione (§ 7.11.3.4.2).

Spettro di riposta elastico in accelerazione della componente verticale

I valori dei parametri di S_S, T_B, T_C, T_D per la componente verticale del moto e per le categorie di suolo di fondazione sono riportati nella Tabella 3.2.VI del D.M. 17.01.2018:

Categoria di sottosuolo	Ss	T _B	T _C	T _D
A, B , C, D, E	1,0	0,05 s	0,15 s	1,0 s

Spettro di riposta elastico in spostamento delle componenti orizzontali

I valori dei parametri di T_E e T_F sono riportati nella Tabella 3.2.VII del D.M. 17.01.2018:

Categoria di sottosuolo	T _E [s]	T _F [s]	
A	4,5	10,0	
В	5,0	10,0	
C, D, E	6,0	10,0	

Pur se la Categoria di Sottosuolo è chiara, in ottemperanza a quanto stabilito dalle vigenti normative nazionali (NTC 2018) e regionali (DGR Lazio n. 489 del 17/17/2012), per la definizione delle azioni sismiche, è comunque necessario predisporre specifiche analisi di Risposta Sismica Locale (RSL).

MICROZONAZIONE SISMICA L1

Il fabbricato in esame, in riferimento alla Microzonazione Sismica di Livello 1 aggiornata come base per la MS di Livello 3, redatta dallo scrivente ed approvata dalla Regione Lazio risulta inserita nella seguente Microzona Omogenea in Prospettiva Sismica (MOPS):

Zona 4 - ZONA STABILE SUSCETTIBILE DI AMPLIFICAZIONE SISMICA LOCALE per presenza di depositi alluvionali-eluviali argilloso-breccioso-sabbiosi, posti su substrato conglomeratico ciottoloso, ghiaioso e sabbioso in banchi anche cementati.

MICROZONAZIONE SISMICA L3

Il lotto in esame, in riferimento alla Microzonazione Sismica di Livello 3 redatta dallo scrivente in collaborazione con il Centro di Microzonazione Sismica ai sensi dell'Ordinanza del Commissario Straordinario al Sisma 2016 n. 24 del 15 maggio 2017 ed approvata dal Dipartimento di Protezione Civile e dalla Regione Lazio, è inserito nella seguente Microzona (MOPS):

Area STABILE SUSCETTIBILE DI AMPLIFICAZIONI SISMICHE LOCALI di MS3 con FATTORE DI AMPLIFICAZIONE FA = 1.3 nell'intervallo di frequenza compreso tra 0,1 e 0,5 Hz.

LIVELLO DI VULNERABILITA' DELL'OPERA

Come da R.R. 13 luglio 2016 n. 64, si allega la tabella della Vulnerabilità dell'opera dove viene riquadrata la casella di interesse.

LIVELLO DI V	VULNERA	BILITA' D	ELL'OPE	RA	
	zona sismica 1	zona sismica 2a	zona sismica 2b	zona sismica 3a	zona sismica 3b
ASSEVERAZIONI	MEDIO	MEDIO	MEDIO	BASSO	BASSO
PROGETTI A SORTEGGIO	MEDIO	MEDIO	MEDIO	BASSO	BASSO
PROGETTI A CONTROLLO OBBLIGATORIO (classe d'uso II; classe d'uso III, escluse le strutture per l'istruzione - DGRL n. 489/2012)	ALTO	MEDIO	MEDIO	BASSO	BASSO
PROGETTI A CONTROLLO OBBLIGATORIO (classe d'uso III - strutture per l'istruzione; classe d'uso IV e opere pubbliche)	ALTO	ALTO	ALTO	MEDIO	MEDIO

INDAGINI GEOGNOSTICHE GEOTECNICHE E GEOFISICHE SVOLTE

- ➤ Nel rispetto del D.M. Infrastrutture e Trasporti del 17.01.2018 "Aggiornamento delle Norme Tecniche per le Costruzioni",
- ▶ della Circolare 21.01.2019 n. 7 "Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018". (S.O. Gazzetta Ufficiale n. 5 del 11/02/2019),
- ➤ del Regolamento Regionale 13 luglio 2016, n. 14 Snellimento e semplificazione delle procedure per l'esercizio delle funzioni regionali in materia di prevenzione del rischio sismico e di repressione delle violazioni della normativa sismica (BUR Lazio n. 56 del 14/07/2016).
- visto il dettagliato rilevamento geologico di tutti i fronti e scavi naturali e artificiali;
- vista l'entità dell'opera;
- vista la conoscenze della zona per altri lavori eseguiti nei dintorni;

visto che la litostratigrafia è costituita da coperture detritico-argillose su depositi conglomeratici ciottolosi-ghiaiosi-sabbiosi fortemente addensati che costituiscono il substrato geologico e simico del sito;

l'indagine è stata svolta con le seguenti prospezioni, ed anche riprendendo indagini eseguite in fasi pregresse, che si ritengono più che sufficienti per la caratterizzazione litostratigrafica, geotecnica e sismica del terreno di sedime.

INDAGINI ESEGUITE in **FASE ATTUALE**

- 3 SONDAGGI GEOGNOSTICI A ROTAZIONE E CAROTAGGIO CONTINUO di cui 2 attrezzati per Down-Hole che hanno raggiunto ciascuno la profondità di 30 metri dal piano di campagna e che hanno permesso di accertare la litostratigrafia di dettaglio costituita da riporto e copertura eluviale su substrato conglomeratico.
- 14 PROVE PENETROMETRICHE DINAMICHE in foro di sondaggio SPT (Standard Penetration Test).
 - Sondaggi ed SPT in situ sono stati eseguiti dalla società Sondedile srl, Laboratorio autorizzato dal Ministero delle Infrastrutture e dei Trasporti – Concessione n. 3515 del 16/03/2012 – Indagini geognostiche, prelievo di campioni e prove in situ.
- PROVE GEOTECNICHE DI LABORATORIO su 2 campioni di terreno.
- 4 SONDAGGI GEOGNOSTICI A ROTAZIONE E CAROTAGGIO CONTINUO INCLINATI SULLA BASE DI MURATURE E PLINTI DI FONDAZIONE per accertarne la profondità e il terreno di appoggio che è risultato essere il substrato conglomeratico ciottoloso-ghiaioso-sabbioso.
- 3 ANALISI MULTICANALE DELLE ONDE DI SUPERFICIE (M.A.S.W.) per la definizione delle VSeq,30.
- 2 INDAGINI SISMICHE DOWN-HOLE in fori di sondaggio S1_{DH} e S2_{DH} per la definizione dei parametri sismici da correlare con le unità litotecniche e da utilizzare per l'analisi della Risposta Sismica Locale.

Musisters dell'Atenzien

ADEGUAMENTO SISMICO "SCUOLA DELL'INFANZIA" DI LEONESSA

4 MISURE TROMOGRAFICHE di RUMORE SISMICO a STAZIONE SINGOLA
 – PROVA H/V per la determinazione della frequenza di risonanza del terreno.

Non sono state eseguite prove DPSH perché non significative in quanto avrebbero dato immediato rifiuto sui banconi conglomeratici.

INDAGINI ESEGUITE in FASE PREGRESSA - Anno 2010

- 1 SONDAGGIO GEOGNOSTICO A ROTAZIONE E CAROTAGGIO CONTINUO che ha raggiunto la profondità di 20 metri dal piano di campagna.
- <u>3 PROVE PENETROMETRICHE DINAMICHE</u> in foro di sondaggio <u>SPT</u> (Standard Penetration Test).

Sondaggi ed SPT in situ sono stati eseguiti dalla società *Geostudi srl*.

• PROVE GEOTECNICHE DI LABORATORIO su 2 campioni di terreno.

Queste prospezioni sono state eseguite nell'ambito del Progetto per il Miglioramento sismico dell'Edificio della Scuola Elementare (oggi Primaria).

INDAGINI ESEGUITE in FASE PREGRESSA - Anno 2007

- <u>2 ANALISI MULTICANALE DELLE ONDE DI SUPERFICIE (M.A.S.W.)</u> per la definizione delle Vs30.
- 2 PROSPEZIONI DI SISMICA A RIFRAZIONE.

Anche queste prospezioni sono state eseguite nell'ambito del Progetto per il Miglioramento sismico dell'Edificio della Scuola Elementare (oggi Primaria).

RISULTATI DELLE INDAGINI GEOGNOSTICHE, GEOTECNICHE E GEOFISICHE

SONDAGGIO GEOGNOSTICO A ROTAZIONE E CAROTAGGIO CONTINUO "\$1ph"

Fase: ATTUALE

Ubicazione: Lato sud Scuola Secondaria di Primo Grado

Falda: non rilevata fino alla profondità indagata

Quota p.c.: 961 metri slm (CTR) Quota fondo foro: 931 metri slm

Attrezzatura: foro rivestito e cementato per prova Down-Hole (DH)

Profondità	Potenza	Simbologia	Descrizione litostratigrafica	Falda	Rivestimento provvisorio	Campioni	Prof. SPT	N° di colpi	Rivestimento definitivo	Pocket (MPa) rifiuto > 0.6	Carotaggio %	Scala 1:200
- 0.80 - 2.60	1.80 0.8	<u> </u>	Terreno vegetale argilloso marrone con minuti clasti calcarei e resti di laterizi sparsi Recupero materiale: spezzoni di carota.				- 2.00	5 3 3				1 2 3
			Brecciole eterometriche a clasti spigolosi (2-3cm) e sabbie a granulometria media e grossolana in matrice argillosa di colore variabile dal marrone al nocciola, localmente preponderante, da mediamente consistenti a consistenti. Recupero materiale: spezzoni di carota e materiale sciolto.				-5.00	28 50	ato all'esterno			4 5 6 7 8
			Terreno a grana grossa da addensato a molto addensato, costituito da ciottoli e ghiaie calcaree e selciose eterometriche (diametro dei clasti superiore ai 10cm) da sub-arrotondati ad angolosi, in abbondante matrice sabbiosa e sabbioso-limosa avana-biancastra. Localmente, livelli prettamente				-9.00	50	Rivestimento definitivo in PVC (ф 90mm e sp. 4.8mm), cementato all'esterno			9 10 11 12 13
	27.40		sabbiosi grossolani con ghiaietto fortemente addensati. Recupero materiale: spezzoni di carota e materiale sciolto.		ф 127		-15.0	50	PVC (ф 90mm e			14 15 16 17 18
							- 20.0	50	nento definitivo ir			20 21 22 23
									Rivestir			24 25 26 27 28
30.00												29 30

SONDAGGIO GEOGNOSTICO A ROTAZIONE E CAROTAGGIO CONTINUO "S2DH"

Fase: ATTUALE

Ubicazione: Fra Scuola dell'Infanzia e Palestra Falda: non rilevata fino alla profondità indagata

Quota p.c.: 962 metri slm (CTR) Quota fondo foro: 932 metri slm

Attrezzatura: foro rivestito e cementato per prova Down-Hole (DH)

Profondità	Potenza	Simbologia	Descrizione litostratigrafica	Falda	Rivestimento provvisorio	Campioni	Prof. SPT	N° di colpi	Rivestimento definitivo	Pocket (MPa) rifiuto > 0.6	Carotaggio %	Scala 1:200
- 1.00 - 2.50	1.50 1.00		Terreno vegetale argilloso marrone con minuti clasti calcarei e resti di laterizi sparsi Recupero materiale: spezzoni di carota.			1.30 C1 1.70	- 2.00	4				1 2 3
			Brecciole eterometriche a clasti spigolosi (2-3cm) e sabbie a granulometria media e grossolana in matrice argillosa di colore variabile dal marrone al nocciola, localmente preponderante, da mediamente consistenti a consistenti. Recupero materiale: spezzoni di carota e materiale sciolto.				- 7.00	4 4 35 50	ntato all'esterno			4 5 6 7 8
	27.50		Terreno a grana grossa da addensato a molto addensato, costituito da ciottoli e ghiaie calcaree e selciose eterometriche (diametro dei clasti superiore ai 10cm) da sub-arrotondati ad angolosi, in abbondante matrice sabbiosa e sabbioso-limosa avana-biancastra. Localmente, livelli prettamente sabbiosi grossolani con ghiaietto fortemente addensati.		7		-12.0	50	nm e sp. 4.8mm), ceme			10 11 12 13 14 15
			Recupero materiale: spezzoni di carota e materiale sciolto.		ф 127		-18.0	50	Rivestimento definitivo in PVC (ф 90mm e sp. 4.8mm), cementato all'esterno			16 17 18 19 20 21
30.00							- 25.0	50	Rivestimento			23 24 25 26 27 28 29

SONDAGGIO GEOGNOSTICO A ROTAZIONE E CAROTAGGIO CONTINUO "S3"

Fase: ATTUALE

Ubicazione: Lato ovest Scuola dell'Infanzia

Falda: non rilevata fino alla profondità indagata

Quota p.c.: 962 metri slm (CTR) Quota fondo foro: 942 metri slm Attrezzatura: foro non attrezzato

Profondità	Potenza	Simbologia	Descrizione litostratigrafica	Falda	Rivestimento provvisorio	Campioni	Prof. SPT	N° di colpi	Rivestimento definitivo	Pocket (MPa) rifiuto > 0.6	E Carotaggio	Scala 1:150
-1.00	1.00		Terreno vegetale argilloso marrone con minuti clasti calcarei e resti di laterizi sparsi Recupero materiale: spezzoni di carota.				-1.60	8				1 2
5.00	4.00		Brecciole eterometricheBrecciole eterometriche a clasti spigolosi (2-3cm) e sabbie a granulometria media e grossolana in matrice argillosa di colore variabile dal marrone al nocciola, localmente preponderante, da mediamente consistenti a			2.60 C1 3.00	71.00	12 20				3 4 5
- 5.00	15.00		consistenti. Ciottoli e ghiaie molto abbondanti tra -1,50m e -2,20 metri. Recupero materiale: spezzoni di carota e materiale sciolto. Terreno a grana grossa da addensato a molto addensato, costituito da ciottoli e ghiaie calcaree e selciose eterometriche (diametro dei clasti superiore ai 10cm) da sub-arrotondati ad angolosi, in abbondante matrice sabbiosa e sabbioso-limosa avana-biancastra. Localmente, livelli prettamente sabbiosi grossolani con ghiaietto fortemente addensati. Recupero materiale: spezzoni di carota e materiale sciolto.		ф 127		- 8.00 -12.0	25 50 50				6 7 8 9 10 11 12 13 14
20.00		A PARTY AND A PART					-17.0	50				16 17 18 19 20

SONDAGGIO GEOGNOSTICO A ROTAZIONE E CAROTAGGIO CONTINUO "SF1" INCLINATO SU BASE MURATURA SCUOLA DELL'INFANZIA

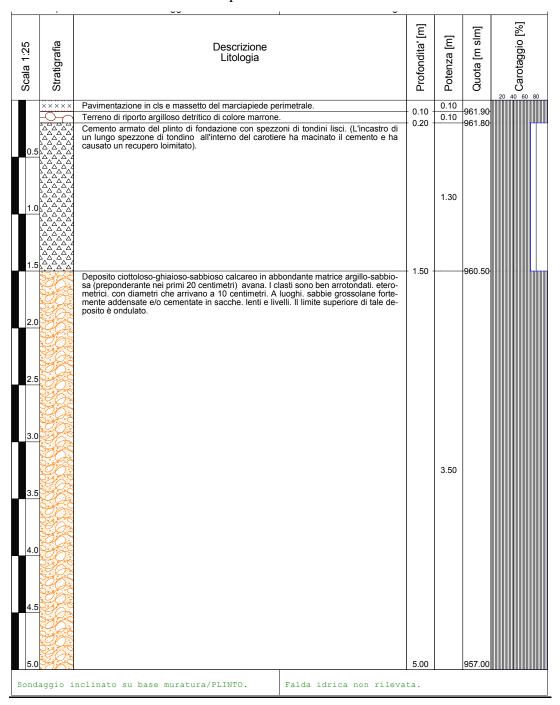
Fase: ATTUALE

Ubicazione: Muro lato ovest Scuola dell'Infanzia

Quota p.c. (marciapiede): 962 metri slm (CTR) - Quota fondo foro: 957 metri slm

Note: foro inclinato sulla base della muratura

			<u> </u>		1		
Scala 1:25	Stratigrafia	Descrizione Litologia		Profondita' [m]	Potenza [m]	Quota [m slm]	Carotaggio [%]
	××××× ×××××	Pavimentazione in cls e massetto del marciapiede perime	etrale.				20 40 00 00
	××××× ××××× ××××× ×××××			- 0.40 -	0.40	961.60	
0.5	$\sum_{i=1}^{n}$	Terreno di riporto argilloso detritico di colore marrone.		0.40		301.00	
1.0					0.80		
		Conglomerato cementizio tipo magrone di base muratura	l.	- 1.20 -		960.80	
1.5					0.40		
		Deposito ciottoloso-ghiaioso-sabbioso calcareo in abbono	danto motrico argillo cabbio	- 1.60 -		960.40	
		sa avana. I clasti sono ben arrotondati. eterometrici. cor centimetri. A luoghi. sabbie grossolane fortemente addei che. lenti e livelli. Il limite superiore di tale deposito è ondi	n diametri che arrivano a 10 nsate e/o cementate in sac-				
2.0		che. lenti e livelli. Il limite superiore di tale deposito è ondi	ulato.				
2.5	200						
	55						
3.0							
					3.40		
3.5							
4.0							
4.5							
	36						
	500						
5.0				5.00		957.00	
Sonda	aggio i	nclinato su base muratura.	alda idrica non rileva	ta.			

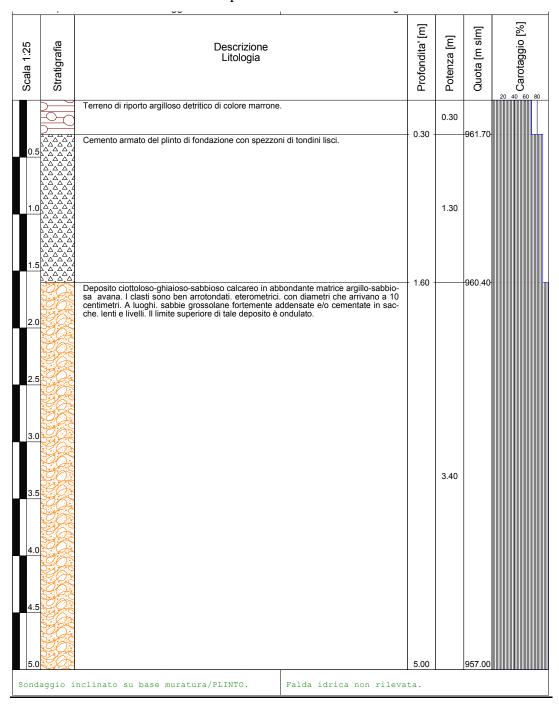

SONDAGGIO GEOGNOSTICO A ROTAZIONE E CAROTAGGIO CONTINUO "SF2" INCLINATO SU BASE PLINTO DI FONDAZIONE SCUOLA DELL'INFANZIA

Fase: ATTUALE

Ubicazione: Pilastro/plinto spigolo nord-ovest Scuola dell'Infanzia

Quota p.c. (marciapiede): 962 metri slm (CTR) - Quota fondo foro: 957 metri slm

Note: foro inclinato sulla base del plinto di fondazione


SONDAGGIO GEOGNOSTICO A ROTAZIONE E CAROTAGGIO CONTINUO "SF3" INCLINATO SU BASE PLINTO DI FONDAZIONE SCUOLA DELL'INFANZIA

Fase: ATTUALE

Ubicazione: Pilastro/plinto spigolo nord-est Scuola dell'Infanzia

Quota p.c. (marciapiede): 962 metri slm (CTR) - Quota fondo foro: 957 metri slm

Note: foro inclinato sulla base del plinto di fondazione

SONDAGGIO GEOGNOSTICO A ROTAZIONE E CAROTAGGIO CONTINUO "SF4" INCLINATO SU BASE MURATURA SCUOLA DELL'INFANZIA

Fase: ATTUALE

Ubicazione: Muro lato est Scuola dell'Infanzia

Quota p.c. (marciapiede): 962 metri slm (CTR) - Quota fondo foro: 957 metri slm

Note: foro inclinato sulla base della muratura

Pavimentazione in cis e massetto del marciapiede perimetrale. Description Pavimentazione in cis e massetto del marciapiede perimetrale. Description Description	Scala 1:25	Stratigrafia ·	Descrizione Litologia		Profondita' [m]	Potenza [m]	Quota [m slm]	Carotaggio [%]
Terreno di riporto argilioso detritico di colore marrone. Conglomerato cementizio tipo magrone di base muratura. 1.00 Deposito ciotoloso-ghialoso-sabbioso calcareo in abbondante matrice argilio-sabbiosa avana. I clasti sono ben arrotondati. eterometrici. con diametri che arrivano a 10 centimetri. A luogiti, sabbie grossolane fortemente addensate e/o cementate in sacche. Ilenti e liveili. Il limite superiore di tale deposito è ondulato. 3.40 3.50 3.40 3.50 3.60 3.70 3.60 3.70					Profe	Pote	Quol	20 40 60 80
Terreno di riporto argilloso detritico di colore marrone. 1.0 Conglomerato cementizio tipo magrone di base muratura. 1.0 Deposito ciottoloso chiaioso-sabbico calcareo in abbondante matrice argillo-sabbico sa avana. I ciasti sono ben anotonosta eterometrici con diametri che arrivano a 10 centimetri. A luoghi, sabbie grossolane fortemente addensate e/o cementate in sacche, lenti e livelii. Il limite superiore di tale deposito è ondulato. 2.0 3.0 3.1 3.5 3.6 3.6 3.7 3.7 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9			Pavimentazione in cls e massetto del marciapiede perimetrale.			0.50		
Conglomerato cementizio tipo magrone di base muratura. 1.00 961.00 0.60 Deposito ciottoloso-ghiaioso-sabbioso calcareo in abbondante matrice argillo-sabbiosa avana. I clasti sono ben arrotondati, eterometrici, con diametri che arrivano a 10 centimetri. A luoghi, sabbie grossolane fortemente addensate e/o cementate in sacche, lenti e livelli. Il limite superiore di tale deposito è ondulato. 2.0 3.10 3.40 3.50 3.40 3.50 3.50 3.50 3.60 3.70			Terreno di riporto argilloso detritico di colore marrone.		- 0.50 -	0.50	961.50	
2.5 2.5 2.5 2.5 2.5 2.5 2.6 2.7 2.8 2.8 2.9 2.9 2.9 2.9 2.9 2.9			Conglomerato cementizio tipo magrone di base muratura.		- 1.00 -	0.60	961.00	
5.00 957.00	2.5		Deposito ciottoloso-ghiaioso-sabbioso calcareo in abbondante matrice argillo-sa sa avana. I clasti sono ben arrotondati. eterometrici. con diametri che arrivano centimetri. A luoghi. sabbie grossolane fortemente addensate e/o cementate in che. lenti e livelli. Il limite superiore di tale deposito è ondulato.	abbio- a 10 i sac-	- 1.60 -	3.40	960.40	
	4.5						957.00	

PROVE GEOTECNICHE "SPT" (Standard Penetration Test) in Fori di Sondaggio (Fase ATTUALE)

Di seguito vengono riassunti i risultati delle prove penetrometriche SPT (Standard Penetration Test) eseguite nei sondaggi secondo le Raccomandazioni AGI 1977, considerando che il numero dei colpi si riferisce all'affondamento della punta dei primi 15 cm (N1), dei secondi 15 cm (N2) e degli ultimi 15 cm (N3).

Nelle elaborazioni allegate il valore di N usato nei calcoli (espresso come N2+N3) è corretto per la profondità secondo il metodo di Bazaraa.

Il valore da intendersi come RIFIUTO all'infissione della punta è quello di 50 colpi.

Sondaggio	Terreno	SPT	Profondità	N1 (15 cm)	N2 (30 cm)	N3 (45 cm)	N _{SPT}
S1 рн	Brecciole argillose	1	2,00 – 2,45	5	3	3	6
S1 рн	Ciottoli, ghiaie e sabbie	2	5,00 – 5,30	28	50		RIF
S1 рн	Ciottoli, ghiaie e sabbie	3	9,00 – 9,15	50			RIF
S1 рн	Ciottoli, ghiaie e sabbie	4	15,00 – 15,15	50			RIF
S1 рн	Ciottoli, ghiaie e sabbie	5	20,00 – 20,15	50			RIF
\$2 _{DH}	Brecciole argillose	1	2,00 – 2,45	4	4	4	8
\$2 _{DH}	Ciottoli, ghiaie e sabbie	2	7,00 – 7,30	35	50		RIF
\$2 _{DH}	Ciottoli, ghiaie e sabbie	3	12,00 – 12,15	50			RIF
\$2 _{DH}	Ciottoli, ghiaie e sabbie	4	18,00 – 18,15	50			RIF
\$2 _{DH}	Ciottoli, ghiaie e sabbie	5	25,00 – 25,15	50			RIF
S3	Brecciole argillose	1	1,60 – 2,05	8	12	20	32
S3	Ciottoli, ghiaie e sabbie	2	8,00 – 8,30	25	50		RIF
S3	Ciottoli, ghiaie e sabbie	3	12,00 – 12,15	50			RIF
S3	Ciottoli, ghiaie e sabbie	4	17,00 – 17,15	50			RIF

Tali valori confermano, secondo il Criterio di controllo di Schmertmann sull'attendibilità della prova, la litologia dei terreni attraversati che è riferibile a terreni

argilloso-detritici e granulari grossolani, da molto addensati a pseudo-liotoidi.

La prova SPT (Standard Penetration Test) è un valido mezzo di indagine nei terreni granulari e/o prevalentemente granulari, come nel presente caso. Viene eseguita in foro di sondaggio facendo cadere per gravità a sganciamento automatico un maglio di 63,5 kg da un'altezza di 76 centimetri e contando i colpi necessari per l'affondamento della punta conica per 45 cm con passo di 15 centimetri.

I Parametri Geotecnici del banco sono stati elaborati con il programma di calcolo SPTWIN della Geosoft sulla base di correlazioni standard derivanti da studi specifici di vari autori che di seguito vengono riportati.

Densità relativa Dr (%): Schultze-Menzenbach, Gibbs & Holtz, Bazaraa, Skempton, Marcuson-Bieganousky, Fardis-Veneziano

Angolo di Attrito Efficace \(\rightarrow \) (°): Road Bridge Specification, Japanese National Railway (Shioi e Fukuni), De Mello, Owasaki& Iwasaki, Sowers, Malcev, Peck-Hanson & Thorburn, Meyerhof Modulo di Deformabilità E (Mpa): Denver, Schmertmann, D'Appollonia, Schultze-Menzenbach, Sanglerat

Modulo di Taglio G (Mpa): Yoshida, Ohsaki & Iwasaki, Sherif & Ishibashi, Otha e Goto, Hardin e Drenevich, Iwasaki e Tatsuoka, Prange

Coesione non drenata Cu (KPa): Terzaghi e Peck, Design Manual for Soil Mechanics, Sanglerat

Modulo di Winkler k (kg/cmc): Terzaghi

Velocità Onde di Taglio **Vs** (m/sec): Muzzi (1984), Lee (1990)

Nel modello geologico-geotecnico del terreno vengono indicati i parametri geotecnici medi consigliati, derivati dalle suddette elaborazioni, mediati e ridotti a favore della sicurezza.

I parametri sismico-elastici di deformazione sono stati definiti con la prova geofisica Down-Hole.

PROVE GEOTECNICHE di Laboratorio TERRE

(Fase ATTUALE)

Sono state eseguite dal Laboratorio SA.GE.DIL. srl di Passo Corese autorizzato dal Ministero Infrastrutture e Trasporti Settore A E B ai sensi del DPR 380/01 e della circolare 7618/2010 - Decreto 215/2015.

Sono stati prelevati 2 campioni poco disturbati indicati con S2-C1 e S3-C3.

- Argilla limosa debolmente ghiaiosa e sabbiosa: campione 1 alla profondità di 1,30-1,70 m nel sondaggio S2_{DH}.
- Argilla limosa debolmente ghiaiosa e sabbiosa: campione 1 alla profondità di 2,60-3,00 m nel sondaggio S3.

Le prove di laboratorio eseguite sui campioni sono le seguenti:

- Contenuto d'acqua allo stato naturale
- Peso di volume allo stato naturale
- Peso dell'unità di volume dei grani medio
- Caratteristiche fisiche e volumetriche (Indice dei vuoti Porosità Peso di Volume saturo Grado di saturazione Peso di Volume secco Peso di Volume immerso)
- Caratteristiche di consistenza Limiti di Attemberg
- Prova di Taglio Diretto (CD)

Oltre ai parametri suddetti, sono stati determinati anche:

- Angolo d'attrito efficace
- Coesione efficace

Analisi multicanale delle onde sismiche di superficie (M.A.S.W.)

(Fase ATTUALE)

Le indagini MASW, in numero di 3, sono state eseguite nei dintorni della Scuola Secondaria di Primo Grado, della Scuola dell'Infanzia e della Palestra in quanto la Scuola Primaria era stata interessata da MASW alcuni anni fa.

Il M.A.S.W. è una metodologia sismica utilizzata per la caratterizzazione delle unità subsuperficiali (fino ed oltre 30 m di profondità) presenti nel sottosuolo mediante la generazione di profili unidimensionali e tomografie bidimensionali del campo di velocità delle onde S (Vs).

Come è ben noto le onde S sono direttamente correlabili ai parametri geomeccanici delle rocce che attraversano. Questa metodologia utilizza le onde superficiali di Raleygh normalmente chiamate ground roll.

La registrazione avviene attraverso un sismografo multicanale connesso a più geofoni. La modalità di propagazione delle onde di superficie viene analizzata attraverso tecniche di processamento particolari che permettono di associare un profilo verticale delle Vs alle onde di superficie registrate.

La notevole energia delle onde di superficie (tipo Raleygh) permette di lavorare e di effettuare prospezioni anche in aree dove normalmente non è possibile con le classiche indagini sismiche a riflessione o a rifrazione data la bassa energia delle onde riflesse o rifratte che facilmente possono essere disturbate da onde di altro tipo legate alla normale noise ambientale.

Il processo di acquisizione e di elaborazione si può schematizzare come segue:

- A) energizzazione del terreno mediante una massa battente oppure esplosivo;
- B) acquisizione e preprocessamento delle onde registrate in un diagramma spazio-
- C) estrazione della curva di dispersione frequenza-velocità di fase con controllo del rapporto segnale-rumore;

- D) inversione mediante iterazioni multiple e creazione di un modello unidimensionale profondità-onde S (Vs) sulla verticale di ogni geofono;
- E) eventuale elaborazione di tutti i profili unidimensionali in una immagine tomografica bidimensionale dell'andamento delle velocità delle onde S (Vs) con la possibilità di riconoscere i diversi layer, ed eventuali corpi sepolti lungo il profilo effettuato.

Nell'elaborato allegato si riportano i risultati delle 3 MASW con sismogrammi, curve di dispersione estratte mediante analisi "overtone", profili verticali delle onde S calcolati/interpolati fino a 20, 40 e 39 m di profondità a partire dal p.c. utilizzando frequenze comprese tra 10 e 51 hz ed infine i tabulati di calcolo delle Vs_{30} che sono risultate essere pari a 738 m/sec (MASW 1), 619 m/sec (MASW 2) ed infine 676 m/sec (MASW 3), ma tutte con substrato sismico locale (Vs > 800 m /sec) a profondità inferiore ai 30 metri dal piano di campagna.

Prove geofisiche DOWN - HOLE in fori di sondaggio S1_{DH} ed S2_{DH} (Fase ATTUALE)

Per definire i parametri sismico-elastici dei terreni, sono state eseguite due prospezioni geofisiche-sismiche DOWN-HOLE (DH) nei fori di sondaggio S1_{DH} ed S2_{DH} preventivamente attrezzati con tubo in pvc pesante e cementazione tra tubo e terreno, che di seguito vengono indicati con le sigle "DH 1" e "DH 2".

Queste prove hanno consentito di tarare le profondità dei diversi terreni anche con indagine geofisica indiretta mediante la quale è stato soprattutto possibile determinare i parametri di deformazione dei terreni tramite la conoscenza della velocità di propagazione delle onde elastiche di compressione (Vp) e trasversali (Vs) nei diversi tipi di depositi attraversati dal sondaggio.

Le prove sono state eseguite con un geofono tridimensionale da foro BHG1 Geostuff con centralina da superficie motorizzata. Per l'acquisizione è stato utilizzato un sismografo multicanale ad alta risoluzione Geometrics ES-3000.

Nel metodo sismico down-hole (DH) viene misurato il tempo necessario per le onde P e S di spostarsi tra una sorgente sismica, posta in superficie, e il ricevitore, posto all'interno di un foro di sondaggio.

I risultati del DH sono stati elaborati in due modi: "Metodo Diretto" e "Metodo Intervallo", che sono descritti nell'apposito allegato specifico. Il secondo metodo, in generale, consente di migliorare la qualità delle misure.

Con i dati del DH vengono quindi calcolati i tempi corretti sia per le onde P che per le onde S e si realizza il grafico tcorr - z in modo che la velocità media delle onde sismiche in strati omogenei di terreno è rappresentata dall'inclinazione dei segmenti di retta lungo i quali si allineano i dati sperimentali.

Ottenuti graficamente i sismostrati si ottengono i seguenti parametri:

- densità media, (g) funzione della velocità e della profondità
- coefficiente di Poisson medio (v ni)
- modulo di deformazione a taglio medio (G)
- modulo di compressibilità edometrica medio (Ed)
- modulo di Young medio (E)
- modulo di compressibilità volumetrica medio (Ev)

I risultati vengono di seguito riportati sinteticamente, mentre sono illustrati per esteso nell'apposito elaborato allegato.

DOWN-HOLE 1

DH 1 - Metodo diretto

Profondità di riferimento: 30 m VS30: 726 m/s

Sismostrati con metodo diretto

Sismostrati con metodo diretto	
Descrizione	Profondità
(-)	(m)
Strato1	2
Strato2	6
Strato3	16
Strato4	19
Strato5	30

Valori medi

Vp medio	Vs medio	g medio	ni medio	G medio	Ed medio	E medio	Ev medio
(m/s)	(m/s)	(kN/mc)		(MPa)	(MPa)	(MPa)	(MPa)
554,02	206,4	19,51	0,42	84,74	610,52	240,55	497,54
938,97	570,61	22,24	0,21	738,49	1999,69	1783,06	1015,04
1703,58	981,35	23,47	0,25	2305,04	6946,24	5770,32	3872,86
1449,28	691,24	22,93	0,35	1117,04	4910,28	3022,17	3420,9
1916,38	1091,27	23,83	0,26	2894,23	8925,44	7293,81	5066,47

DH 1 - Metodo intervallo

Profondità di riferimento: 30 m VS30: 748 m/s

Sismostrati con metodo Intervallo

Descrizione	Profondità
(-)	(m)
Strato1	2
Strato2	6
Strato3	16
Strato4	19
Strato5	30

Valori medi

Vp medio	Vs medio	g medio	ni medio	G medio	Ed medio	E medio	Ev medio
(m/s)	(m/s)	(kN/mc)		(MPa)	(MPa)	(MPa)	(MPa)
559,26	212,12	20,75	0,42	97,38	665,91	275,02	536,08
1024,52	606,43	22,34	0,18	891,57	2586,46	2094,28	1397,70
1784,94	1006,42	23,51	0,24	2517,03	8071,74	6269,41	4715,70
1480,23	702,55	21,89	0,34	1121,55	5014,85	2992,24	3519,44
1930,44	1118,51	23,88	0,28	3145,02	9146,94	7469,24	4953,59

DOWN-HOLE 2

DH 2 - Metodo diretto

Profondità di riferimento: 30 m VS30: 771 m/s

Sismostrati con metodo diretto

Descrizione	Profondità
(-)	(m)
Strato1	3
Strato2	4
Strato3	9
Strato4	11
Strato5	13
Strato6	14
Strato7	30

Valori medi

Vp medio	Vs medio	g medio	ni medio	G medio	Ed medio	E medio	Ev medio
(m/s)	(m/s)	(kN/mc)		(MPa)	(MPa)	(MPa)	(MPa)
522,65	248,76	19,76	0,35	124,7	550,49	337,59	384,22
1030,93	505,05	23,04	0,34	599,18	2496,59	1608,33	1697,68
1953,12	912,41	23,22	0,36	1971,46	9033,78	5364,05	6405,16
1724,14	763,36	23,4	0,38	1390,53	7093,6	3832,55	5239,56
2127,66	1010,1	23,57	0,35	2452,29	10880,45	6643,35	7610,73
1234,57	757,58	23,84	0,2	1395,16	3705,12	3342,84	1844,91
2005,01	1187,82	24,12	0,23	3470,6	9888,59	8535,04	5261,12

DH 2 - Metodo intervallo

Profondità di riferimento: 30 m 791 m/s VS30:

Sismostrati con metodo Intervallo

Descrizione	Profondità
(-)	(m)
Strato1	3
Strato2	4
Strato3	9
Strato4	11
Strato5	13
Strato6	14
Strato7	30

Valori medi

v alori inc	uı						
Vp medio	Vs medio	g medio	ni medio	G medio	Ed medio	E medio	Ev medio
(m/s)	(m/s)	(kN/mc)		(MPa)	(MPa)	(MPa)	(MPa)
556,07	254,95	20,93	0,35	141,14	694,86	382,60	506,68
1034,02	505,61	22,00	0,34	573,50	2398,61	1540,31	1633,95
2001,83	916,95	23,23	0,34	2005,14	9695,80	5333,60	7022,28
1742,16	766,70	22,47	0,37	1349,48	6992,02	3695,27	5192,70
2155,80	1012,61	23,57	0,36	2471,59	11301,33	6708,70	8005,88
1234,42	754,49	22,27	0,20	1292,73	3460,39	3107,21	1736,76
2078,11	1248,91	24,21	0,21	4097,30	11127,68	9575,55	5664,62

PROVE GEOFISICHE-SISMICHE "H/V" DI RUMORE SISMICO A STAZIONE SINGOLA "HVSR"

(Fase ATTUALE)

La Prova H/V è una metodologia sismica per la determinazione della frequenza di risonanza fondamentale del terreno tramite misure tromografiche di rumore sismico (HVSR). Una prova geofisica-sismica è stata realizzata in prossimità del sondaggio geognostico, così da avere un adeguato riscontro con la litostratigrafia locale, facendo letture ripetute su un largo arco temporale in modo da poter eliminare i disturbi "di fondo" naturali e antropici.

Per il presente studio, sono state <u>eseguite 4 misure HVSR</u> dislocate in altrettanti punti circostanti gli Edifici scolastici con il duplice scopo di:

- intercettare un livello con forte contrasto di impedenza da considerare come bedrock sismico anche a conferma di quanto individuato con MASW e DH;
- verificare l'omogeneità dell'area dal punto di vista sismico.

Due misure hanno dato lo stesso risultato, mentre le altre hanno registrato valori leggermente più alto. Si tratta, quindi, di risultati concordanti e estremamente validi per lo scopo prefissato.

Le caratteristiche delle prove sono di seguito riportate:

Strumento: TRZ-0190/01-12

Formato dati: 16 byte Fondo scala [mV]: n.a. Registrazione: 07/02/17

Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

Durata registrazione: 0h20'00". Analisi effettuata sull'intera traccia.

Freq. campionamento: 128 Hz

Lunghezza finestre: 20 s

Tipo di lisciamento: Triangular window

Lisciamento: 10%

Le elaborazioni delle prove sono state eseguite con software **TROMINO**[®] *Grilla* e i 4 risultati vengono di seguito riportati.

HVSR1: Picco H/V a 14.38 ± 11.52 Hz (nell'intervallo 0.0 - 64.0 Hz).

HVSR2: Picco H/V a 14.91 ± 11.87 Hz (nell'intervallo 0.0 - 20.0 Hz).

HVSR3: Picco H/V a 15.00 ± 2.71 Hz (nell'intervallo 0.0 - 64.0 Hz).

HVSR4: Picco H/V a 14.38 ± 0.67 Hz (nell'intervallo 0.0 - 64.0 Hz).

I 4 picchi H/V, perfettamente confrontabili tra loro, sono considerabili come frequenza di risonanza del sito in quanto sono naturali. In corrispondenza di tali picchi, infatti, è evidente la forma spettrale "a occhio" ("a ogiva"), determinata da un minimo locale della componente verticale, che è quella che caratterizza i picchi H/V di origine naturale. I primi tre presentano disturbi antropici che portano a non rispettare tutti i Criteri Sesame, al contrario del quarto che rispetta tutti i Criteri.

A livello stratigrafico-sismico, quindi, le 4 prove H/V sono interpretabili come indicative di un sito in cui è presente, a debole profondità, un livello con forte contrasto di impedenza sismica interpretabile come bedrock sismico locale, in accordo con quanto rilevato con le MASW e i DH.

INDAGINI ESEGUITE IN FASI PREGRESSE

SONDAGGIO GEOGNOSTICO A ROTAZIONE E CAROTAGGIO CONTINUO "S"

Fase: PREGRESSA Anno 2010

Ubicazione: Lato est Scuola Elementare (oggi Primaria)

Falda: non rilevata fino alla profondità indagata

Quota p.c.: 962 metri slm (CTR) Quota fondo foro: 942 metri slm Attrezzatura: foro non attrezzato

Esecuzione: Geostudi srl

once	ssione l	Ministero	delle Infrastrutture e Trasporti n° 52497 ai sensi dellArt.n°8 del D.P.R. n° 246/93 per prove di			-	. a	1		
laboratorio (Settore A) e prove in sito (Settore C) Via San Salvador 3 - 00040 Pomezia (Roma) Tel/Fax 0691603360-0691603317 - email GEOSTUDI@fastwebnet.it		Commit	tente	Comune di Leonessa Scuole Elementari						
		Progetto								
		1003360	0-069 16053 17 - email GEOS I ODI@fastwebnet.it	Localita	' :	Leones	sa (RI)			
Scala metrica	Profondita' mt.	Simbologia	Descrizione litostratigrafica-geotecnica	Pocket Kg/cm²	Vane Test	Campioni Indisturbati	Campioni Rimaneggiati	Prove SPT (Ry - pc)	Numero di Colpi	NSPT
1,0	0,00		0,00 - 1,70 m: Sabbis ghiaiosa con argilla e limo, umida, colore marrone rossastro. La componente grossolan risulta eterometrica fino alle dimensioni della ghiaia grossolana , max, 2-3 cm, da subarrotondata a subangolare, di natura prevalentemente carbonatica, colore marrone chiaro.	nd nd nd nd nd	nd nd nd nd nd					
3,0	1,70	1.		nd nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd			3,00 SPT 1 Pc 3,45	32 44 48	92
4,0 5,0			1,70 - 15,00 m: Sabbia medio grossolana con ciottoli, umida, molto addensata, colore marroncino chiaro-biancastra a tratti ossidata. La componente grossolana risulta fortemente eterometrica, max5-6 cm, da subangolare ad arrotondata, di natura esclusivamente carbonatica, colore marroncino chiaro- biancastro.	nd nd nd nd nd nd nd	nd nd nd nd nd nd nd nd		5,60 CR1 pve 6,00			
7,0				nd nd nd nd nd nd	nd nd nd nd nd nd nd		6,00	10,80	30	
9,0				nd nd nd nd nd nd	nd nd nd nd nd nd nd	A STATE OF THE STA		SPT 2 Ry 11,25	50/12cm	RIf.
11,0				nd nd nd nd nd nd	nd nd nd nd nd nd		11,60 CR2			
12,0				nd nd nd nd nd nd	nd nd nd nd nd nd nd		12,00			
14,0	15,00			nd nd nd nd nd	nd nd nd nd	A STATE OF THE STA		14,90 SPT 3 Pc	44 50/10 cm	Rif.

PROVE GEOTECNICHE "SPT" (Standard Penetration Test) in Fori di Sondaggio S (Fase PREGRESSA Anno 2010)

Sondaggio	Terreno	SPT	Profondità	N1 (15 cm)	N2 (30 cm)	N3 (45 cm)	N _{SPT}
s	Ciottoli, ghiaie e sabbie	1	3,00 – 3,45	32	44	48	rif
S	Ciottoli, ghiaie e sabbie	2	10,80 – 11,25	30	50		RIF
S	Ciottoli, ghiaie e sabbie	3	14,90 – 18,23	44	50		RIF

PROVE GEOTECNICHE di Laboratorio TERRE

(Fase PREGRESSA Anno 2010)

Sono state eseguite dal Laboratorio Geostudi srl di Pomezia autorizzato dal Ministero Infrastrutture e Trasporti Settore A e C ai sensi del DPR 246/93 e della circolare 349/99 - Concessione 52497.

Sono stati prelevati 2 campioni poco disturbati indicati con S1-CR1 e S1-CR2.

- Ghiaia sabbiosa limosa argillosa: campione 1 alla profondità di 5,60-6,00 m nel sondaggio S.
- Ghiaia con sabbia limosa debolmente argillosa: campione 2 alla profondità di 11,60-12,00 m nel sondaggio S.

Le prove di laboratorio eseguite sui campioni sono le seguenti:

- Contenuto d'acqua allo stato naturale
- Peso di volume allo stato naturale
- Peso dell'unità di volume dei grani medio
- Caratteristiche fisiche e volumetriche (Indice dei vuoti Porosità Peso di Volume saturo - Grado di saturazione - Peso di Volume secco - Peso di Volume immerso)
- Caratteristiche di consistenza Limiti di Attemberg
- Analisi granulometrica
- Prova di Taglio Diretto Residuo

Oltre ai parametri suddetti, sono stati determinati anche:

- Angolo d'attrito residuo
- Coesione residua

PROVE GEOFISICHE "MASW" E SISMICA A RIFRAZIONE

(Fase PREGRESSA Anno 2007)

Nell'ambito del "Progetto per il Miglioramento sismico della Scuola Elementare (oggi Primaria)", furono eseguite le seguenti indagini che vengono riportate come documentazione inerente le caratterizzazione sismica di Velocità delle Onde S e delle Onde P dei terreni circostanti il fabbricato:

- n. 2 sondaggi sismici verticali con metodologia M.A.S.W.
- n. 2 stese di Sismica a Rifrazione.

Le indagini MASW furono realizzate sui lati nord e sud dell'edificio scolastico. Nell'elaborato allegato si riportano i risultati delle 2 MASW con sismogrammi, curve di dispersione estratte mediante analisi "overtone", profili verticali delle onde S calcolati fino a 26 e 28 m di profondità a partire dal p.c. utilizzando frequenze comprese tra 11 e 35 hz ed infine i tabulati di calcolo delle Vs₃₀ che sono risultate essere pari a **568 m/sec** (MASW 1) e 653 m/sec (MASW 2).

Anche le stese di SISMICA A RIFRAZIONE furono eseguite sui lati nord e sud dell'edificio scolastico oggetto di intervento attuale. La sismica a rifrazione è una metodologia di rilievo conosciuta da molti anni e che sfrutta un caso particolare di rifrazione in cui il raggio sismico corre lungo un'interfaccia contemporaneamente rimandando i raggi sismici verso la superficie.

Mediante la realizzazione di diagrammi tempo-distanza è possibile ricostruire le traiettorie dei raggi sismici nel sottosuolo, le loro velocità e quindi avere informazioni sull'assetto stratigrafico dei terreni nel sottosuolo

Utilizzando "punti di energizzazione" multipli ed in differenti posizioni lungo lo stendimento scelto è possibile ricostruire, mediante l'analisi del campo di velocità delle onde sismiche di volume, i più complessi assetti del substrato geologico.

Nelle sezioni realizzate è stato possibile investigare 18 m di profondità a partire dal piano campagna.

Le profondità d'indagine variabili sono funzione principalmente delle lunghezze degli stendimenti utilizzati.

Le velocità rilevate delle onde di compressione (Vp), sono piuttosto congruenti nelle due sezioni e vanno da 0,4 km/sec fino ad un massimo di 2,1 km/sec.

E' possibile riconoscere 3 layer (strati) caratterizzati dalle seguenti velocità delle onde P (Vp):

- Layer 1) da 0,3 a 0,5 km/s ascrivibile alla presenza di una coltre superficiale di alterazione o di terreni di riporto o colluvium aventi spessori che variano da qualche decimetro fino ad un massimo di circa 3 m. Tali unità litotecniche sono caratterizzate da qualità geomeccaniche molto scadenti.
- <u>Layer 2</u>) da 0,5 a 1,0 km/s, ascrivibile alla presenza unità litotecniche caratterizzate da qualità geomeccaniche da medie a scadenti.
- Layer 3) da 1,0 a 2,1 km/s, ascrivibile ad orizzonti di terreni molto più competenti di quelli superiori. Tali unità litotecniche sono caratterizzate da qualità geomeccaniche da medie a buone.

CONDIZIONI FONDALI SCUOLA DELL'INFANZIA (MATERNA)

I sondaggi geognostici SF2 e SF3 hanno consentito di accertare che i plinti di fondazione (su cui poggiano i pilastri) sono in cemento armato con armatura in tondini di ferro liscio e che gli stessi poggiano direttamente sul deposito ciottoloso-ghiaiososabbioso alla profondità di 1,50/1,60 metri dal piano del marciapiede perimetrale attuale.

I sondaggi geognostici SF1 e SF4 hanno consentito di accertare che i muri perimetrali posti tra i pilastri/plinti di fondazione poggiano su uno strato di conglomerato cementizio tipo magrone di spessore pari a 40-60 centimetri poggiato a sua volta direttamente sul deposito ciottoloso-ghiaioso-sabbioso alla profondità di 1,50/1,60 metri dal piano del marciapiede perimetrale attuale.

MODELLO GEOLOGICO - GEOTECNICO DEL TERRENO

DIRETTAMENTE AL DI SOTTO DELLE STRUTTURE FONDALI E MURARIE DELLA SCUOLA DELL'INFANZIA (MATERNA)

Nel paragrafo seguente viene illustrata la litostratigrafia geotecnica interpretata e ricostruita dallo scrivente in virtù dell'analisi e della sintesi di tutte le risultanze degli elementi di indagine sopra indicati.

1 Da Piano marciapiede perimetrale a –1,50/1,60 metri:

Plinti isolati di fondazione in c.a. su cui poggiano i pilastri e conglomerato cementizio tipo magrone di spessore pari a 40-60 centimetri su cui poggiano le murature perimetrali poste tra i pilastri.

2 Da –1,50 m a –35,00 m:

Deposito ciottoloso-ghiaioso-sabbioso. Terreno a grana grossa e media costituito da ciottoli e ghiaie calcaree e calcareo-marnose a clasti fortemente eterometrici (diametri fino al oltre 10cm), a vario grado di arrotondamento, mal classate, da addensate a molto addensate, in abbondante matrice sabbiosa di colore avana-biancastro e localmente sabbioso-limosa rossastra. Presenti livelletti ghiaiosi pseudo-litoidi, livelli di sabbie grossolane fortemente addensate e noduli di selce biancastra-rossastra.

Peso di volume terreno	Yt = 20,32 – 21,05 kN/m ³
Angolo di attrito interno efficace	φ' = 36,2° - 38,3°
Angolo di attrito interno residuo	φr = 33,0° - 34,8°
Coesione efficace	C' = 5,0 – 8,0 kPa
Coesione residua	Cr = 0,0 - 0,0 kPa
Modulo di Deformazione drenato	E' = 52,5 – 53,9 MPa
Modulo di Taglio Dinamico	G = 150,1 – 194,7 MPa
Modulo di Winkler	$K = 15 - 18 \text{ kg/cm}^3$

MODELLO GEOLOGICO - GEOTECNICO MEDIO DEL TERRENO

IN CONDIZIONI NATURALI DELL'INTERA ZONA DEL PLESSO SCOLASTICO

1 Da Piano Campagna a –1,00 metro:

Terreno vegetale argilloso marrone con minuti clasti calcarei e laterizi sparsi.

Peso di volume terreno	$Yt = 17.8 - 18.0 \text{ kN/m}^3$
Angolo di attrito interno	φ' = 18° - 20°
Coesione non drenata	Cu = 18 - 19 kPa

2 Da -1,00 m a -1,50/2,50 m:

Brecciole eterometriche a clasti spigolosi e sabbie a granulometria media e grossolana in matrice limoso-argillosa dal marrone al nocciola, localmante preponderante, da mediamente consistenti a dure; presenza di livelli ghiaiosi.

Peso di volume terreno	Yt = 19,39 – 20,36 kN/m ³
Angolo di attrito interno efficace	φ' = 24° - 27°
Coesione efficace	C' = 18,0 – 28,0 kPa
Modulo di Deformazione drenato	E' = 26,8 – 27,5 MPa
Modulo di Taglio Dinamico	G = 115,2 – 124,6 MPa
Modulo di Winkler	$K = 3.0 - 3.5 \text{ kg/cm}^3$

3 Da -1,50/2,50 m a -35,00 m:

Terreno a grana grossa e media costituito da ciottoli e ghiaie calcaree e calcareo-marnose a clasti fortemente eterometrici (diametri fino al oltre 10cm), a vario grado di arrotondamento, mal classate, da addensate a molto addensate, in abbondante matrice sabbiosa di colore avana-biancastro e localmente sabbioso-limosa rossastra. Presenti livelletti ghiaiosi pseudo-litoidi, livelli di sabbie grossolane fortemente addensate e noduli di selce biancastra-rossastra.

Peso di volume terreno	Yt = 20,32 – 21,05 kN/m ³
Angolo di attrito interno efficace	φ' = 36,2° - 38,3°
Angolo di attrito interno residuo	φr = 33,0° - 34,8°
Coesione efficace	C' = 5,0 - 8,0 kPa
Coesione residua	Cr = 0,0 - 0,0 kPa
Modulo di Deformazione drenato	E' = 52,5 – 53,9 MPa
Modulo di Taglio Dinamico	G = 150,1 – 194,7 MPa
Modulo di Winkler	$K = 15 - 18 \text{ kg/cm}^3$

MIUR

ADEGUAMENTO SISMICO "SCUOLA DELL'INFANZIA" DI LEONESSA

AZIONE SISMICA - ANALISI DELLA RISPOSTA SISMICA LOCALE

Oltre a quanto sopra indicato, per meglio definire i parametri che influenzano l'azione sismica e lo spettro di risposta del sito specifico, in ottemperanza a quanto stabilito dalle normative sopra richiamate, è stato eseguito lo studio di Risposta Sismica Locale prendendo a riferimento le stratigrafie di tutti i sondaggi e in particolare quelle dei Sondaggi "SDH" dove sono state appositamente eseguite le prospezioni geofisichesismiche dirette DOWN-HOLE (DH 1 e 2) nel fori di sondaggio, preventivamente attrezzati con tubo in pvc pesante e cementazione tra tubo e terreno.

Con i dati dei DH sono stati definiti i sismostrati e sono stati ottenuti i seguenti parametri utilizzati per la modellazione geofisica di input nelle due calcolazioni separate per i due fori di indagine: *densità media*, (g) funzione della velocità e della profondità, coefficiente di *Poisson* medio (v - ni), modulo di *deformazione a taglio* medio (G), modulo di *compressibilità edometrica* medio (Ed), *modulo di Young* medio (E) ed infine il modulo di *compressibilità volumetrica* medio (Ev).

La <u>Risposta Sismica Locale</u> (o amplificazione locale) è l'insieme delle modifiche che il moto sismico di ingresso al sito subisce, in termini di ampiezza, contenuto in frequenza e durata, dovute alle condizioni locali.

Queste ultime sono rappresentate dalle caratteristiche morfologiche e dalle caratteristiche stratigrafiche degli ammassi rocciosi (bedrock) e dei depositi di terreno superficiali e delle proprietà fisiche e meccaniche dei materiali che li costituiscono.

La RSL si quantifica con la Funzione di amplificazione A(f) definita come il rapporto tra lo spettro di Fourier del segnale in superficie e lo spettro di Fourier del segnale su roccia affiorante.

La funzione di amplificazione è una proprietà del sito e può essere espressa in funzione della geometria e delle proprietà meccanica del sottosuolo.

La funzione di amplificazione, quindi, corrisponde al modulo del rapporto tra gli spettri al terreno ed al bedrock ed indica quali componenti quali componenti del moto sismico sono state amplificate nel passaggio attraverso il terreno e quali smorzate.

Nel caso in studio, i Fattori influenti, a seconda dei principali fenomeni fisici responsabili della modifica delle caratteristiche del moto sismico, sono rappresentati dagli Effetti stratigrafici o mono dimensionali (1D).

Gli Effetti stratigrafici (1D) sono rappresentati dal cosiddetto Rapporto di Impedenza Roccia-Terreno e dal fenomeno della Risonanza.

Il Rapporto di Impedenza Roccia-Terreno è definito come $\mathbf{I} = \mathbf{g}_{\mathbf{R}} \times \mathbf{V}_{\mathbf{R}} / \mathbf{g}_{\mathbf{S}} \times \mathbf{V}_{\mathbf{S}}$ dove è:

gs = densità Terreno

Vs = velocità onde di taglio

gs x Vs = impedenza sismica Terreno

gr = densità Roccia

Vs = velocità onde di taglio

gr x Vs = impedenza sismica Roccia

I = rapporto impedenza roccia-terreno

La funzione di amplificazione di uno strato omogeneo su substrato è funzione del rapporto di impedenza I.

Le frequenze corrispondenti ai massimi della funzione di amplificazione si chiamano frequenze (periodi) naturali di vibrazione del deposito:

$$f_1 = \frac{V_S}{4H}$$
 $T_1 = \frac{1}{f_1} = \frac{4H}{V_S}$

La situazione più pericolosa in termini di fenomeni di amplificazione si verifica quando la frequenza dell'eccitazione (f) è pari ad una delle frequenze fondamentali dello strato f_n (risonanza).

Durante un terremoto il terreno è soggetto a stress di compressione e di taglio (τ) e risponde alle sollecitazioni cicliche con deformazioni (γ) definibili tramite due coefficienti: Modulo di Taglio Secante ($G = \tau_c / \gamma_c$) e Fattore di Smorzamento.

Si distinguono 3 livelli di Deformazione e Comportamento meccanico: alle piccole deformazioni ($\gamma_c < 0.001 \%$); alle medie deformazioni ($0.001\% < \gamma_c < 0.1\%$); alle deformazioni elevate (γ c > 0,1 %).

A piccole deformazioni (γc <0,001%) il legame sforzi tangenziali – deformazioni tangenziali è ai fini pratici schematizzabile con un modello elastico lineare.

Modulo di taglio massimo $G = G_0 = Gmax$ - Fattore di Smorzamento iniziale $D = D_0$

$$G_0 = Gmax = \rho V_S^2 = \gamma/g V_S^2$$

 ρ = densità del mezzo bifase

 γ = peso dell'unità di volume

g = accelerazione di gravità

A medie deformazioni (0.001% $< \gamma c < 0.1\%$) il legame $\tau - \gamma$ è non lineare e dissipativo e non è influenzato dal numero dei cicli N.

A deformazioni elevate il legame τ - γ è influenzato dal numero dei cicli N e i parametri G e D evolvono al crescere del numero dei cicli di N.

Negli effetti stratigrafici (1D), quindi, i livelli di deformazione influenzano la rigidezza e lo smorzamento del terreno.

I Campi di variazione delle curve G/G0- γ variano per ghiaie, sabbie e argille e roccia e influenzano direttamente il comportamento dissipativo del terreno.

La Risposta Sismica di un sottosuolo reale, in definitiva, è determinata dalla Variazione con la profondità dei parametri di rigidezza e smorzamento dovuto all'eterogeneità dei terreni costituenti il sottosuolo e alla dipendenza di tali parametri dallo stato tensionale.

La valutazione quantitativa della risposta sismica locale può effettuarsi sulla base del confronto tra diverse grandezze rappresentative del moto sismico alla superficie del terreno e quello di riferimento (roccia affiorante ecc.) nel dominio del tempo o delle frequenze.

MIUR

ADEGUAMENTO SISMICO "SCUOLA DELL'INFANZIA" DI LEONESSA

Nel dominio del tempo il parametro più significativo è il rapporto tra l'accelerazione massima alla superficie del terreno e quella in corrispondenza del bedrock, rapporto che prende il nome di Fattore di Amplificazione e può essere maggiore o minore dell'unità.

Per la risposta del suolo non ci si può limitare alle variazioni di ampiezza ma anche alle modifiche in frequenza. Il terreno agisce come filtro incrementando le ampiezze in corrispondenza di alcune frequenze e riducendole in altre.

La valutazione dell'effetto filtraggio esercitato dal terreno sul moto sismico di riferimento si ottiene attraverso la cosiddetta Funzione di Amplificazione.

I profili di suoli possono essere via via più complessi ed esistono soluzioni teoriche dal punto di vista geotecnico da un modello semplicistico monodimensionale rappresentato da uno strato omogeneo di spessore H che si appoggio sul bedrock rigido ad un complesso multistrato a parametri geotecnici variabili con modi di oscillazione e frequenze proprie diverse e smorzate.

La risposta di un deposito di terreno ad una eccitazione sismica è fortemente influenzata dalla frequenza originale: le frequenze in corrispondenza delle quali si verificano elevate amplificazioni dipendono dalla geometria (spessore) e dalle caratteristiche fisico-meccaniche (Vs) del deposito di terreno.

La situazione più pericolosa in termini di amplificazione si verifica quando la frequenza di eccitazione (w) è corrispondente ad una delle frequenze fondamentali dello strato (wn). Quando si verifica tale condizione (w = wn) si ha la risonanza dello strato ed il fattore di amplificazione è teoricamente infinito.

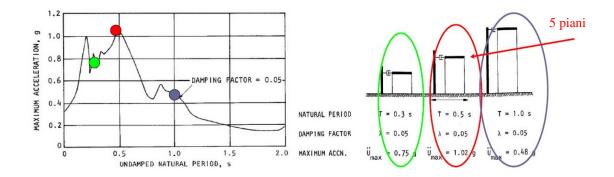
Ai fini della valutazione quantitativa dell'effettiva risposta sismica locale, la determinazione del terremoto di riferimento va accoppiata ad una modellazione realistica del sottosuolo, per definire la funzione di amplificazione locale che non è una proprietà univoca del sito ma dipende anche dai caratteri del moto di riferimento, dai suoi contenuti in frequenza e dal suo contenuto energetico.

Per garantire la massima affidabilità di un'analisi della risposta sismica locale è necessario tenere conto delle inevitabili disomogeneità del sottosuolo, della variazione tra strato e strato dei parametri di rigidezza e smorzamento, della geometria dei depositi e della morfologia del sito allo scopo di realizzare una modellazione la più reale possibile.

A eccezione di un numero molto limitato di situazioni semplici, l'approccio fisico-matematico non conduce a soluzioni in forma chiusa, cioè per via integralmente analitica, pertanto in generale è necessario fare ricorso a procedimenti numerici più o meno complessi, spesso con approcci basati su processi di discretizzazione del continuo.

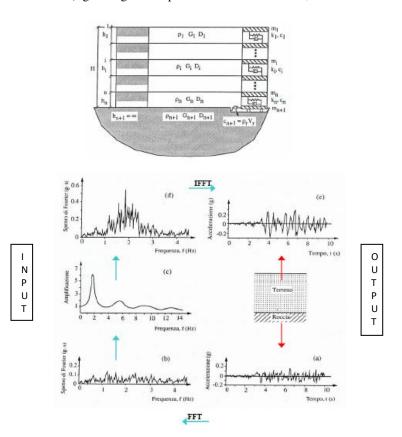
I parametri rappresentativi del moto sismico sono ampiezza, durata e periodo che si riflettono sul contenuto in frequenze rappresentabili con lo Spettro di Fourier e lo Spettro di Risposta elastico al sito.

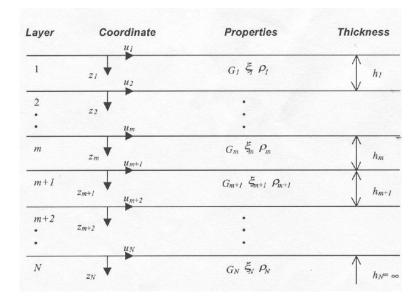
Lo Spettro di risposta dell'oscillatore semplice è definito come legge di variazione della massima ampiezza (accelerazione, velocità o spostamento) del moto prodotto da un segnale sismico u(t) alla base di un oscillatore semplice con un fissato smorzamento e un periodo proprio variabile.


Nel caso in esame, lo smorzamento (ξ) è fissato in un valore del 5%.

Dalle ordinate spettrali si riesce ad avere immediatamente un'idea delle caratteristiche delle strutture maggiormente sollecitate dall'evento.

I <u>periodi caratteristici</u> che interessano direttamente strutture edilizie fino a cinque piani di altezza sono quelli compresi tra 0.1 e 0.5 secondi in uno spettro di risposta sismica locale (come mostrano i grafici seguenti del Prof. Tito Sanò).




L'intervallo tra 0.1 e 0.5 sec è tipico degli edifici più rigidi, a sviluppo verticale limitato (indicativamente fino a 5 piani) e regolari, mentre l'intervallo tra 0.5 e 1.0 sec è tipico degli edifici più flessibili e a maggior sviluppo verticale (numero di piani indicativamente maggiore di 5 e fino a 15).

L'edificio scolastico di Leonessa, quindi, rientra nell'intervallo 0.1-0.5 sec.

<u>L'analisi monodimensionale (1D)</u> del sottosuolo stratificato dell'Edificio scolastico di Leonessa è stata condotta con modello numerico a strati continui e parametri concentrati (figura seguente ripresa da Lanzo e Silvestri, 1999 – modificata).

Schema 1D per un deposito

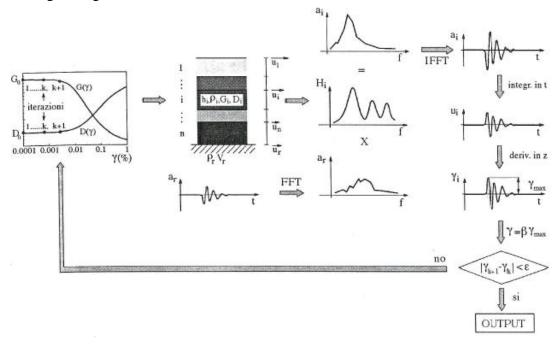
Nei modelli a strati continui, il terreno è schematizzato come un mezzo continuo multistrato, in cui ogni strato è assunto omogeneo ed a comportamento viscoelastico lineare.

I parametri che caratterizzano lo strato i-esimo sono lo spessore h_i (z), la densità ρ_i , il modulo di taglio G_i (= ρ_i V_{SI}^2) ed il fattore di smorzamento D_i (ξ), legato al coefficiente di viscosità η_i del mezzo continuo dalla relazione (con ω sollecitazione armonica di frequenza:

$$D_i = \frac{\eta_i \omega}{2G_i}$$

La previsione del moto dell'intero sistema si ottiene a partire dall'equazione differenziale di equilibrio dinamico che governa il fenomeno della propagazione delle onde in ciascuno strato omogeneo.

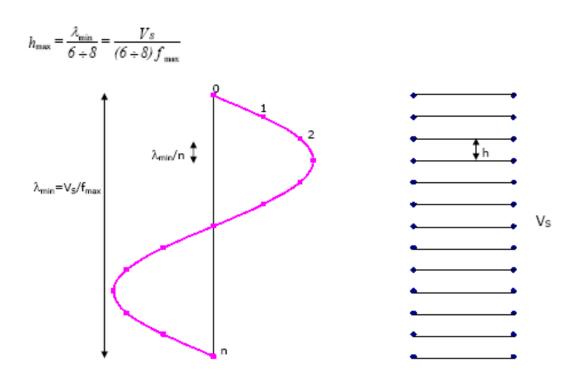
Le espressioni risultanti permettono di esprimere la funzione spostamento u(z,t) e la funzione di trasferimento $H_{ik}(\omega)$, che esprime il rapporto tra le ampiezze di spostamento tra due qualsiasi livelli i e k.


Trattandosi di funzioni armoniche, si esprime anche la funzione di trasferimento di velocità e accelerazioni tra strato e strato. Per k=1, i=n, la si fornisce, al variare di ω , la <u>funzione di amplificazione</u> del moto tra il substrato roccioso (bedrock) e la superficie libera di un profilo di sottosuolo suddiviso in strati omogenei.

L'applicazione delle varie formule nel dominio delle frequenze permette di operare la convoluzione di un sismogramma da un punto all'altro del profilo, utilizzando algoritmi che effettuano molto rapidamente trasformate di Fourier dirette (Fast Fourier Trasform, FFT) e inverse (IFFT).

Per esempio, se $a_r(t)$ è un dato accelerogramma al bedrock, in questo modo è possibile determinare numericamente il moto corrispondente in superficie $a_s(t)$ mediante la funzione di trasferimento tra bedrock e superficie libera.

Il codice SHAKE (Schnabel et al., 1972), che utilizza l'analisi di Fourier secondo l'approccio descritto, implementa una procedura logica di iterazione sui parametri per tener conto del comportamento non lineare del terreno, è sinteticamente rappresentata nella figura seguente.

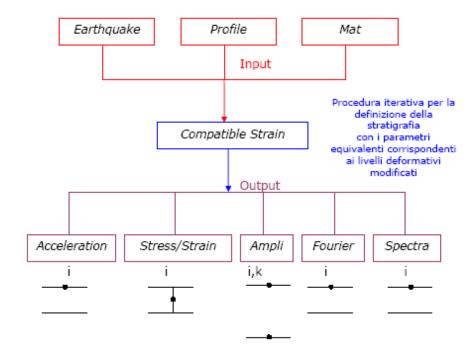


Ogni iterazione (ciclo k) consiste nel calcolo del moto dell'intero sistema mediante le funzioni di trasferimento complesse $H_{ij}(f)$; nell'iterazione successiva (ciclo k+1), i parametri di rigidezza e smorzamento di ogni strato vengono aggiornati in relazione ad un valore caratteristico γ mediamente rappresentativo della storia irregolare di deformazione dello strato stesso, espresso come aliquota del valore massimo di $\gamma(t)$ (in genere tra 0.6 e 0.7, tipicamente 0.67). Il numero di step k va iterato fino a che non risulta $|\gamma k+1-\gamma k| < \epsilon$ in ogni strato, essendo ϵ una prefissata tolleranza.

L'accuratezza della soluzione ottenuta è proporzionale al numero di elementi (gradi di libertà) introdotti nella discretizzazione, la cui crescita condiziona però i tempi di calcolo. Una regola aurea per ottimizzare la discretizzazione è quella di prevedere almeno $3\div4$ punti per descrivere la generica semilunghezza d'onda della vibrazione di un elemento di spessore h e velocità V_S .

La condizione comporta che, se f_{max} è la massima frequenza significativa del segnale in ingresso, lo spessore massimo h_{max} da assegnare all'elemento deve essere quello indicato dalla formula seguente rappresentata nel grafico

Il <u>codice di calcolo</u> utilizzato è *EERA* (Bardet et al., 2000), sviluppato nell'anno 1998 in linguaggio Fortran 90 utilizzando i concetti di base di Shake.


EERA è l'acronimo di Equivalent – linear Earthquake Response Analysis ed è una moderna implementazione di concetti ben noti di analisi lineare equivalente della risposta monodimensionale di sito (già stati esposti).

Il programma EERA è tra quelli consigliati dalla DGR 545/2010; i dati in ingresso ed i risultati in EERA sono totalmente integrati nei fogli di calcolo del programma Excel e vengono eseguiti con i seguenti passaggi.

- Legge ed elabora l'accelerogramma preso a riferimento;
- Legge il modello di sottosuolo e le curve $G/G_0 \gamma$ e D (%) γ definite per sabbieghiaie, argille e bedrock, definisce l'ubicazione e il tipo di moto, calcola il periodo fondamentale T del profilo di terreno;
- Esegue i principali calcoli iterativi con *Shake* e *Shake91* a seconda del modello lineare equivalente;
- Calcola le storie temporali di accelerazione, velocità relativa, e spostamento al tetto dei sottostrati selezionati;
- Calcola le storie temporali di tensioni, deformazioni, energia dissipata e cicli tensioni-deformazioni al centro dei sottostrati selezionati;
- Calcola il fattore di amplificazione tra due sottostrati;
- Calcola lo spettro di Fourier al tetto al sottostrato selezionato;
- Calcola tutti gli spettri di risposta in testa ai sottostrati selezionati.

Nella figura seguente, si riporta il diagramma a blocchi riassuntivo della procedura.

Individuazione del MOTO SISMICO di INPUT - Accelerazione di base (ag)

Al fine di effettuare la modellazione numerica per la valutazione degli effetti di sito, è necessario avere a disposizione accelerogrammi e spettri di risposta, da utilizzare come input sismici nella modellazione stessa.

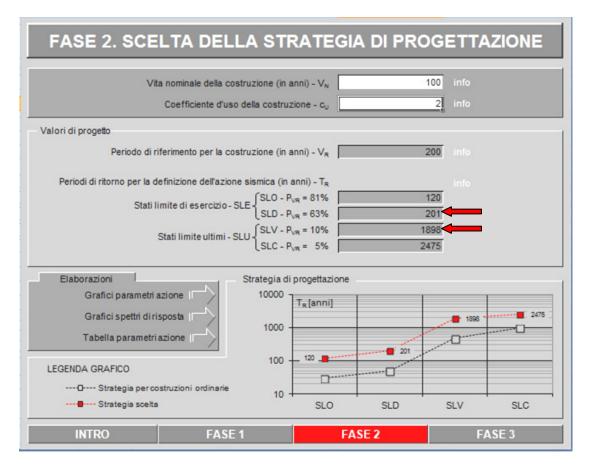
Il primo parametro necessario da considerare è <u>l'accelerazione di base del sito di</u> progetto (ag), al valore della quale bisognerà scalare ognuno dei 7 accelerogrammi, costituenti l'input sismico.

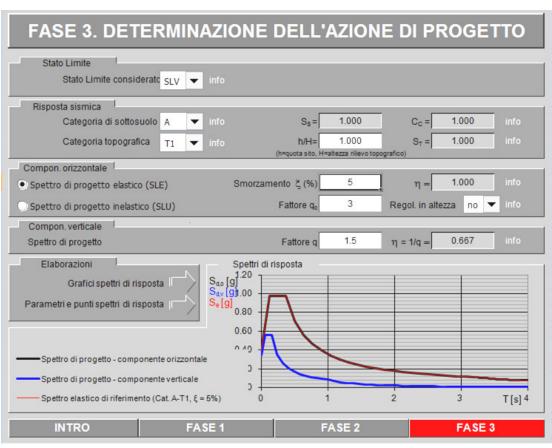
Per la definizione di **ag** sono necessari i dati seguenti:

- Coordinate del sito;
- Vita di riferimento Vr come moltiplicazione della Vita nominale (Vn) e del Coefficiente d'uso (Cu) derivanti dalla scelta progettuale;
- Categoria Topografica;
- Stati limite del progetto: nel caso in esame, Stato Limite di Salvaguardia della Vita (SLV) e Stato Limite di Danno (SLD), a cui corrisponderanno differenti ag in funzione dei differenti periodi di ritorno Tr.

Le coordinate del sito utilizzate sono quelle riferite alla parte baricentrica del plesso scolastico, espresse nel sistema di riferimento ED50, verificate su Google Earth e con il Weblink http://www.geostru.com/geoapp/parametrisismici.aspx.

I valori ottenuti, in gradi sessagesimali, Longitudine 12,964367°E e Latitudine 42,568052°N, sono stati desunti e inseriti nel foglio di calcolo Spettri-NTC ver. 1.0.3 rilasciato dal Consiglio Superiore dei Lavori Pubblici (figura seguente - Fase 1).




A seguire, fase 2, trattandosi di adeguamento sismico di fabbricato esistente, anche sede di COC e non solo di scuola, e in riferimento al Capitolo 2.4 delle NTC 2018, Tabelle 2.4.I (Tipo di costruzione con "livelli di prestazioni elevati") e 2.4.II (Classe d'Uso e Coefficiente d'Uso), sono stati inseriti i parametri progettuali della Strategia di progettazione mediante i quali è stato possibile desumere la tabella con i parametri ag, Fo e T*c per i quattro stati limite di Progetto: Vita nominale $V_N = 100$ anni; Coefficiente d'uso $C_U = 2$; Periodo di riferimento $V_R = 200$ anni.

Dei quattro stati limite, ai fini dello Studio di RSL in riferimento alla Determinazione dell'Azione sismica di progetto, previo inserimento anche della Categoria topografica T1, sono stati presi in considerazione lo Stato Limite di Salvaguardia della Vita (SLV) e lo Stato Limite di Danno (SLD). I risultati sono riportati nelle figure seguenti.

Sulla scorta di quanto stabilito dalla DGR Lazio n. 489 del 17/10/2012 (Modifica dell'Allegato 2 della DGR Lazio n. 387 del 22 maggio 2009) l'edificio in oggetto, essendo considerato strategico in quanto anche sede di COC, è stato considerato in Classe d'Uso IV.

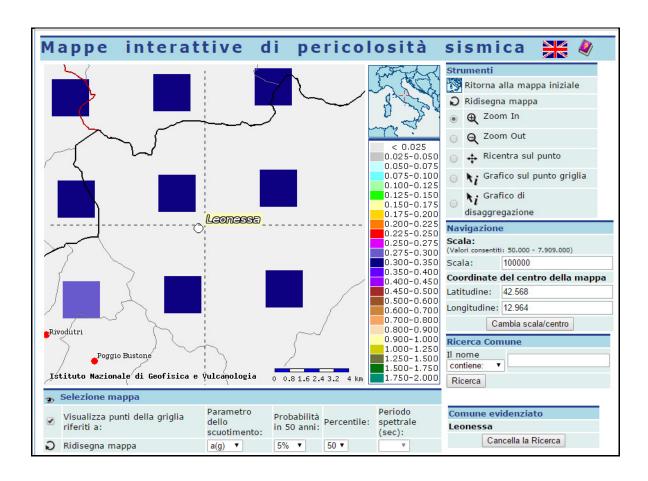
FASE 3. DETERMINAZIONE DELL'AZIONE DI PROGETTO Stato Limite Stato Limite considerato SLD Risposta sismica Categoria di sottosuolo A 1.000 Cc= 1.000 Categoria topografica T1 1.000 h/H= ST = • zza rilievo to Compon. orizzontale 1.000 Smorzamento & (%) n = Spettro di progetto elastico (SLE) 3 Spettro di progetto inelastico (SLU) Fattore qo Regol. in altezza no Compon. verticale Spettro di progetto Fattore q $\eta = 1/q =$ 0.667 Elaborazioni Spettri di risposta S_{do} [g0.45 Grafici spettri di risposta 0.35 Parametri e punti spettri di risposta 0.30 0.25 0.20 0 15 Spettro di progetto - componente orizzontale Spettro di progetto - componente verticale 0 Spettro elastico di riferimento (Cat. A-T1, $\xi = 5\%$) T[s] 4 FASE 2 FASE 3 **INTRO** FASE 1

Parametri e punti dello spettro di risposta orizzontale per lo stato limite SLV Parametri indipendenti Punti dello spettro di risposta STATO LIMITE SLV Se [g] T [s] 0.402 g 0.000 0.402 an 2.424 0.974 0.122 0.365 s0.365 0.974 1.000 0.500 0.710 1.000 0.635 0.559 1.000 0.771 0.461 S_T 1.000 0.906 0.392 q 1.042 0.341 1.177 0.302 Parametri dipendenti 1.312 0.271 1.000 S 1.448 0.245 1.000 1.583 0.224 η 0.122 s 0.207 1.719 T_R 0.365 s 1.854 0.192 To 3.208 s 1.989 0.179 2.125 0.167 2.260 0.157 Espressioni dei parametri dipendenti 2.395 0.148 0.140 2.531 (NTC-08 Eq. 3.2.5) 0.133 2.666 $S = S_S \cdot S_T$ 2.802 0.127 $\eta = \sqrt{10/(5+\xi)} \ge 0.55$; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5) 2.937 0.121 3.072 0.116 (NTC-07 Eq. 3.2.8) 3.208 T₀◀ 0.111 $T_B = T_C/3$ 3.246 0.108

Parametri e punti dello spettro di risposta orizzontale per lo stato limite SLD Parametri indipendenti Punti dello spettro di risposta STATO LIMITE SLD Se [g] T [s] 0.180 g 0.000 0.180 an Fo 2.305 0.103 0.415 0.309 s 0.309 0.415 Tc◀ Tc 1.000 Ss 0.405 0.317 1.000 0.500 0.256 1.000 St 0.596 0.215 1.000 0.692 0.1850.788 0.163 0.145 0.883 Parametri dipendenti 0.131 0.979 S 1.000 1.075 0.119 1.000 1.171 0.109 0.103 s 1.266 0.101 TR 0.309 s 1.362 0.094 Tc 2.320 s 1.458 0.088 1.554 0.082 1.649 0.078 Espressioni dei parametri dipendenti 1.745 0.073 1.841 0.070 (NTC-08 Eq. 3.2.5) 1.937 0.066 $S = S_s \cdot S_T$ 2.032 0.063 $\eta = \sqrt{10/(5+\xi)} \ge 0.55; \ \eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5) 2.128 0.060 2.224 0.058 (NTC-07 Eq. 3.2.8) 2.320 0.055 $T_B = T_C/3$ 2.400 0.052

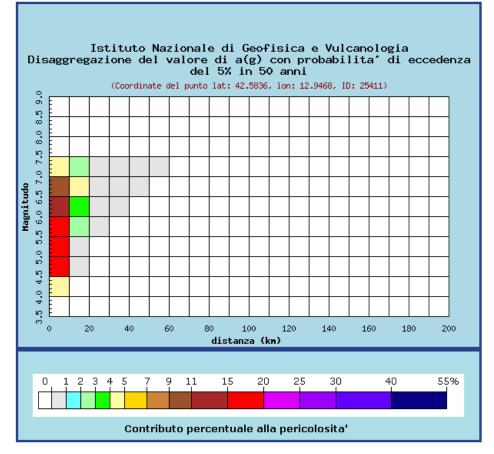
I riquadri rossi indicano i valori di Se [g] / T [s] per lo Stato Limite di Salvaguardia della Vita "SLV" (Tr = 1898 anni) e per lo Stato Limite di Danno "SLD" (Tr = 201 anni) per fabbricato in Classe d'uso IV, Vita Nominale $V_N = 100$ anni, Coefficiente d'Uso $C_U = 2$, Periodo di Riferimento per la costruzione $V_R = 200$ anni ed infine Coefficiente topografico St = 1,00.

	T	T
CLV	T [s]	Se [g]
SLV	0.000	0.402
SLD	T [s]	Se [g]
	0.000	0.180

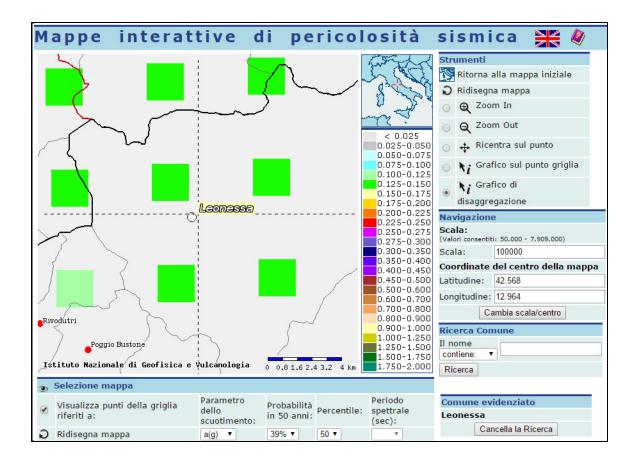


Individuazione del MOTO SISMICO di INPUT - Dati di disaggregazione

Per l'estrazione degli accelerogrammi di input occorre determinare anche i parametri sismologici di disaggregazione, cioè la variabilità in termini di magnitudo (M) e distanza (R).

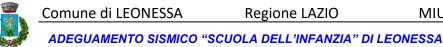

Tali dati sono stati desunti dalla pagina del sito dell'Istituto di Geofisica e Vulcanologia di Milano "http://esse1-gis.mi.ingv.it" dedicata ai dati di pericolosità sismica nazionale.

Si accede ad una pagina webgis, in cui va indicato il comune oggetto d'indagine, la probabilità di accadimento in 50 anni (comunque il valore più vicino al tempo di ritorno più vicino a quello di progetto che nel caso specifico è del <u>5% per SLV</u>) ed il percentile (sempre 50 per la progettazione ai sensi delle NTC 2018). Spuntando il campo "grafico di disaggregazione" e cliccando sul punto più vicino al sito in esame, vengono calcolati i valori di magnitudo-distanza con relativa probabilità.

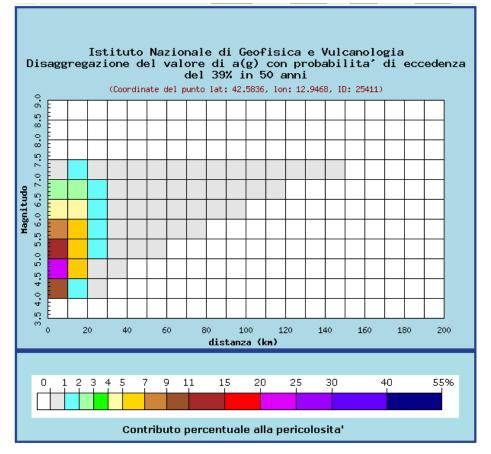


	Disag	gregazio					bilita' di , lon: 12.			5% in 50) anni
Distanza in km	Magnitudo										
	3.5-4.0	4.0-4.5	4.5-5.0	5.0-5.5	5.5-6.0	6.0-6.5	6.5-7.0	7.0-7.5	7.5-8.0	8.0-8.5	8.5-9.0
0-10	0.000	4.780	15.800	18.600	17.600	13.800	9.220	4.040	0.000	0.000	0.000
10-20	0.000	0.000	0.084	0.936	2.380	3.630	4.050	2.610	0.000	0.000	0.000
20-30	0.000	0.000	0.000	0.000	0.043	0.406	0.817	0.760	0.000	0.000	0.000
30-40	0.000	0.000	0.000	0.000	0.000	0.011	0.165	0.248	0.000	0.000	0.000
40-50	0.000	0.000	0.000	0.000	0.000	0.000	0.013	0.061	0.000	0.000	0.000
50-60	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.006	0.000	0.000	0.000
60-70	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
70-80	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
80-90	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
90-100	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
100-110	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
110-120	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
120-130	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
130-140	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
140-150	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
150-160	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
160-170	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
170-180	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
180-190	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
190-200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

Va	lori medi			
Magnitudo	Distanza	Epsilon		
5.770	6.310	1.050		



Dalla pagina del sito dell'Istituto di Geofisica e Vulcanologia di Milano "http://esse1-gis.mi.ingv.it" dedicata ai dati di pericolosità sismica nazionale sono stati estratti i valori di disaggregazione per la probabilità di accadimento in 50 anni introducendo comunque il valore più vicino al tempo di ritorno più vicino a quello di progetto che nel caso specifico è del 39% per SLD ed il percentile (sempre 50 per la progettazione ai sensi delle NTC 2018).


Come per SLV, sono stati estratti i valori di Magnitudo (M) e Distanza (R) che contribuiscono alla pericolosità sismica del sito.

Dalle figure, si può notare che gli estremi di variabilità di M ed R sono gli stessi, mentre cambiano le M max che contribuiscono alla pericolosità.

	Disag	gregazio					oilita' di , lon: 12.			39% in 5	0 anni
Distanza in km	Magnitudo										
	3.5-4.0	4.0-4.5	4.5-5.0	5.0-5.5	5.5-6.0	6.0-6.5	6.5-7.0	7.0-7.5	7.5-8.0	8.0-8.5	8.5-9.0
0-10	0.000	9.950	21.000	14.400	8.480	4.380	2.030	0.686	0.000	0.000	0.000
10-20	0.000	1.770	5.540	6.160	5.420	4.090	2.540	1.050	0.000	0.000	0.000
20-30	0.000	0.034	0.563	1.350	1.760	1.850	1.410	0.739	0.000	0.000	0.000
30-40	0.000	0.000	0.006	0.235	0.600	0.845	0.795	0.501	0.000	0.000	0.000
40-50	0.000	0.000	0.000	0.013	0.173	0.344	0.348	0.255	0.000	0.000	0.000
50-60	0.000	0.000	0.000	0.000	0.035	0.127	0.115	0.097	0.000	0.000	0.000
60-70	0.000	0.000	0.000	0.000	0.005	0.050	0.055	0.054	0.000	0.000	0.000
70-80	0.000	0.000	0.000	0.000	0.000	0.016	0.027	0.031	0.000	0.000	0.000
80-90	0.000	0.000	0.000	0.000	0.000	0.003	0.013	0.018	0.000	0.000	0.000
90-100	0.000	0.000	0.000	0.000	0.000	0.000	0.005	0.011	0.000	0.000	0.000
100-110	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.007	0.000	0.000	0.000
110-120	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.004	0.000	0.000	0.000
120-130	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.000	0.000	0.000
130-140	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.000	0.000
140-150	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
150-160	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
160-170	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
170-180	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
180-190	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
190-200	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

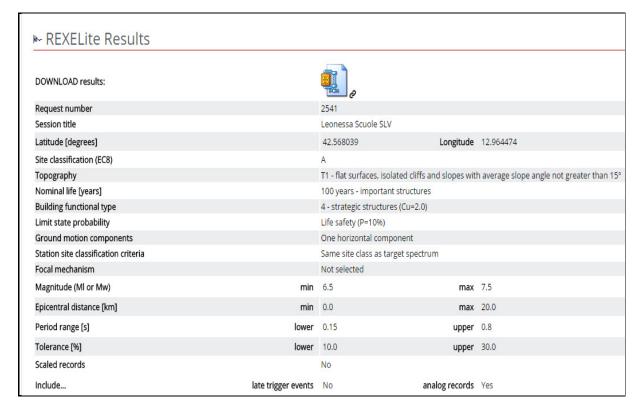
Valori medi								
Magnitudo	Distanza	Epsilon						
5.380	10.800	0.548						

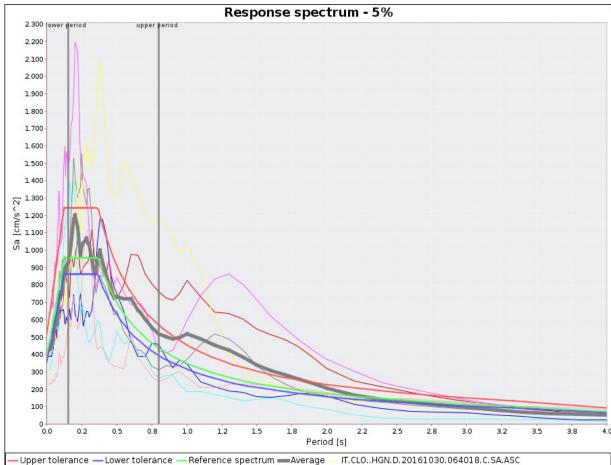
I dati necessari per l'estrazione di input sismici sismocompatibili e spettrocompatibili per un l'edificio in oggetto sono riassunti nella tabella seguente.

Coordinate del sito	Longitudine: 12,964367			
sistema di riferimento ED50	Latitudine: 42,568052			
	Vita nominale (Vn): 100 anni			
	Coefficiente d'uso (Cu): 2			
	Vita di riferimento (Vr): 200 anni			
	Classe d'uso: IV			
Scelta della strategia di progettazione	Categoria topografica: T 1			
	Coefficiente topografico: St = 1,00			
	Stati limite di riferimento:			
	SLV con Tr = 1898 anni			
	SLD con Tr = 201 anni			
Appelorazione erizzantele massima el site (Co)	Se [g] = 0.402g (SLV)			
Accelerazione orizzontale massima al sito (Se)	Se [g] = 0.180g (SLD)			
	Magnitudo (M) compresa tra 4 e 7.5 (SLV) (contributo max% 4.5 <m<7.0)< td=""></m<7.0)<>			
Dati di disaggregazione	Magnitudo (M) compresa tra 4 e 7.0 (SLD) (contributo max% 4 <m<6.0)< td=""></m<6.0)<>			
	Distanza (R) compresa tra 0 e 20 km (SLV)			
	Distanza (R) compresa tra 0 e 30 km (SLD)			


MIUR

Individuazione del MOTO SISMICO di INPUT - Scelta degli accelerogrammi di input


L'estrazione degli accelerogrammi di input è stata elaborata utilizzando **REXELite** che è la versione semplificata del software gratuito **REXEL** messo a punto dalla ReLUIS di Napoli (*Iervolino I., Galasso C., Cosenza E. (2009). REXEL: computer aided record selection for code-based seismic structural analysis. Bulletin of Earthquake Engineering, 8:339-362. DOI 10.1007/s10518-009-9146-1), basata sull'European Strong Motion database (ESM), aggiornato al 2017, per combinazioni di sette accelerogrammi massimi compatibili con lo spettro di riferimento generato in accordo con le Norme Tecniche Italiane 2008.*


Ricerca degli accelerogrammi di Input per SLV - IV - T1

II.BAM1..HNN.D.20031226.015653.C.SA.ASC — II.DAY..HNE.D.19780916.153556.C.SA.ASC — TK.4101..HNE.D.19990817.000138.C.SA.ASC IT.ACC..HGE.D.20161030.064018.C.SA.ASC — IT.CLO..HGE.D.20161030.064018.C.SA.ASC — II.DAY..HNN.D.19780916.153556.C.SA.ASC

Network	Station code	Event time	Scale factor	Usable Bandwidth [Hz]	Orientation	Response spectrum
IT - Italian Strong Motion Network [DPC]	ACC	2016-10-30 06:40:18	1.0	29.94	HGE	
IT - Italian Strong Motion Network [DPC]	CLO	2016-10-30 06:40:18	1.0	29.9	HGE	
IT - Italian Strong Motion Network [DPC]	CLO	2016-10-30 06:40:18	1.0	29.9	HGN	
I1 - Iranian Strong Motion Network [BHRC]	DAY	1978-09-16 15:35:56	1.0	24.7	HNE	
I1 - Iranian Strong Motion Network [BHRC]	DAY	1978-09-16 15:35:56	1.0	24.7	HNN	
I1 - Iranian Strong Motion Network [BHRC]	BAM1	2003-12-26 01:56:53	1.0	39.85	HNN	<u></u>
TK - National Strong-Motion Network of Turkey (TR- NSMN) [AFAD]	4101	1999-08-17 00:01:38	1.0	29.9	HNE	<u></u>

Di seguito si riportano i riferimenti degli *Station Code* con le coordinate in WGS84.

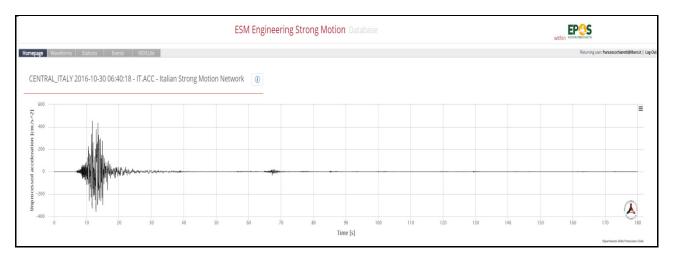
ACC - Accumoli RI, Italy -- Latitudine 42.69600 N - Longitudine 13.2420 E

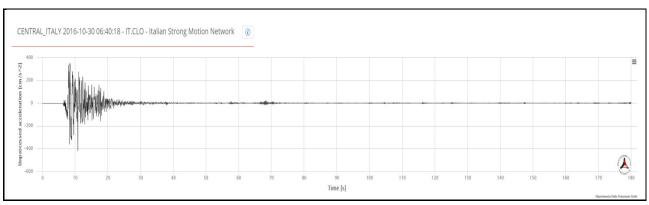
CLO - Castelluccio di Norcia PG, Italy -- Latitudine 42.82940 N - Longitudine 13.20600

DAY - Dayhooh, Iran -- Latitudine 33.29000 N - Longitudine 57.50000 E

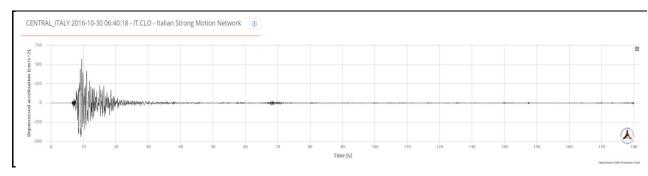
BAM1 - Bam, Iran -- Latitudine 29.07900 N - Longitudine 58.35300 E

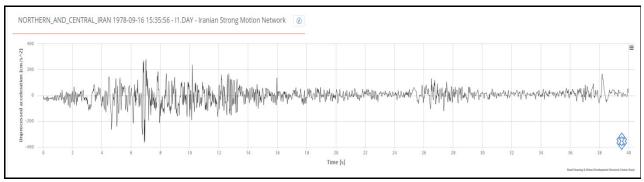
4101 - Izmit, Turkey -- Latitudine 40.76650 N - Longitudine 29.91721 E

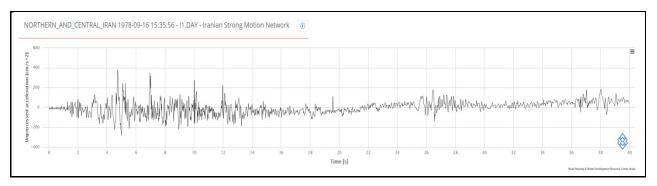

Quindi le caratteristiche sismiche di ogni accelerogramma.

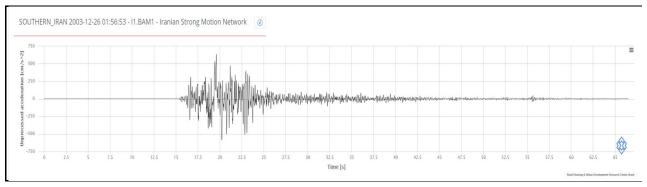


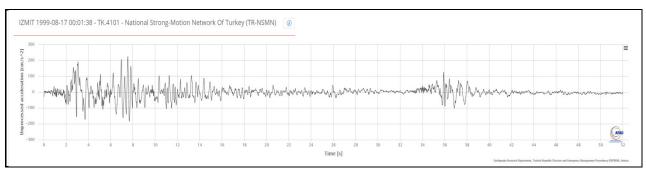
Station code	M_W	M_L	Style Fault	R epi. [km]	Orientation PGA [cm/s^2]		PGV [cm/s^2]	PGD [cm]	
ACC	6.5	6.1	Normal	18.600	Est-West	425.850	-44.076	-14.303	
CLO	6.5	6.1	Normal	7.8	Est-West	-418.616	52.230	14.129	
CLO	6.5	6.1	Normal	29.9	Nord-Sud	571.424	14.916	14.916	
DAY	6.5	7.3	Thrust	10.600	Est-West	-306.057	-19.960	2.838	
DAY	6.5	7.3	Thrust	10.600	Nord-Sud	386.908	-25.358	-5.461	
BAM1	6.6	4.3	Strike-slip	13.500	Nord-Sud	635.033	-63.726	-20.292	
4101	7.6	7.2	Strike-slip	3.400	Est-West	228.877	38.417	-22.937	

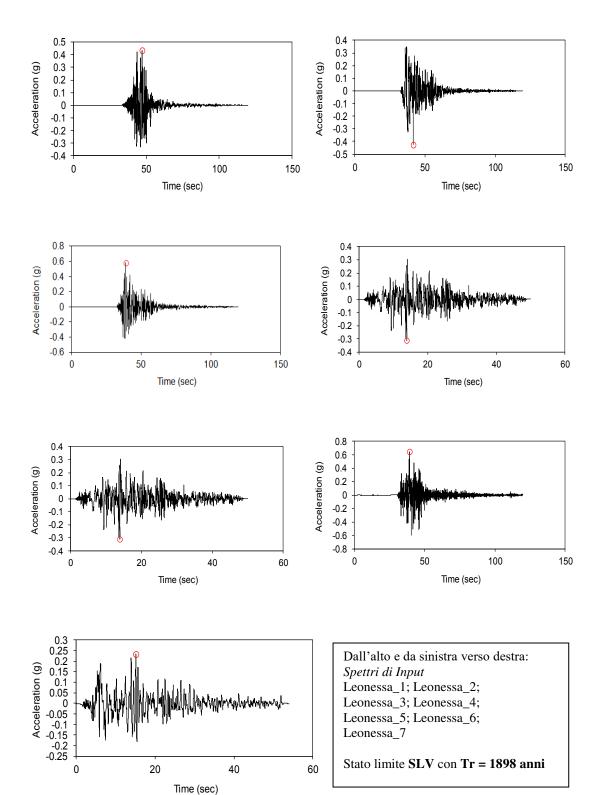

Ed infine le <u>7 tracce accelerometriche naturali</u> per <u>stato limite SLV</u> con <u>M</u> <u>compresa tra 6.5 e 7.5</u> più adatte al sito in oggetto, che sono state poi utilizzate come <u>input</u> per l'analisi monodimensionale di RSL.











In questo modo, *apportando la dovuta equivalenza tra cm/sec*² *e g*, è stato possibile estrarre le combinazioni delle <u>7 tracce accelerometriche naturali</u> per <u>stato</u> <u>limite SLV</u> con <u>M compresa tra 6.5 e 7.5</u> più adatte al sito in oggetto, che sono state poi utilizzate come <u>input</u> per l'analisi monodimensionale di RSL.

Accelerogramma Leonessa natural_2 - SLV

Time step ΔT (sec) = 0.01

Number of points for FFT = 32768

Total number of values read = 12000

Peak Acceleration in input file (g) = -0.4267

Time of peak acceleration (sec) = 41.560

Mean Square Frequency (Hz) = 1.382 Peak acceleration after filtering (g) = 0.427

Name of input file = IT.CLO..HGE

Desired maximum acceleration (g) = 0.4267

Maximum frequency cut-off (Hz) = 25

Use frequency cut-off in calculation? Yes

Import input motion from external file? Yes

ADEGUAMENTO SISMICO "SCUOLA DELL'INFANZIA" DI LEONESSA

Accelerogramma Leonessa natural	1 - SLV	1
---------------------------------	---------	---

Accelerogramma Leonessa natural_3 - SLV

Time step ΔT (sec) = 0.01

Desired maximum acceleration (g) = 0.4341

Maximum frequency cut-off (Hz) = 25

Use frequency cut-off in calculation? Yes

Number of points for FFT = 32768

Import input motion from external file ? Yes

Name of input file = IT.ACC..HGE

Total number of values read = 12000

Peak Acceleration in input file (g) = 0.4341

Time of peak acceleration (sec) = 47.020

Mean Square Frequency (Hz) = 2.176

Peak acceleration after filtering (g) = 0.434

Time step ΔT (sec) = 0.01

Desired maximum acceleration (g) = 0.5825

Maximum frequency cut-off (Hz) = 25

Use frequency cut-off in calculation? Yes

Number of points for FFT = 32768

Import input motion from external file ? Yes

Name of input file = IT.CLO..HGN

Total number of values read = 12000

Peak Acceleration in input file (g) = 0.5825

Time of peak acceleration (sec) = 38.900

Mean Square Frequency (Hz) = 1.282

Peak acceleration after filtering (g) = 0.582

Accelerogramma Leonessa natural 4 - SLV

Time step ΔT (sec) = 0.01

Desired maximum acceleration (g) = 0.312

Maximum frequency cut-off (Hz) = 25

Use frequency cut-off in calculation? Yes

Number of points for FFT = 32768

Import input motion from external file? Yes

Name of input file = I1.DAY..HNE

Total number of values read = 4996

Peak Acceleration in input file (g) = -0.3120

Time of peak acceleration (sec) = 13.810

Mean Square Frequency (Hz) = 2.734

Peak acceleration after filtering (g) = 0.312

Accelerogramma Leonessa natural_5 - SLV

Time step ΔT (sec) = 0.01

Desired maximum acceleration (g) = 0.3944

Maximum frequency cut-off (Hz) = 25

Use frequency cut-off in calculation? Yes

Number of points for FFT = 32768

Import input motion from external file ? Yes

Name of input file = I1.DAY..HNN

Total number of values read = 4996 Peak Acceleration in input file (g) = -0.3120

Time of peak acceleration (sec) = 13.810

Mean Square Frequency (Hz) = 2.734

Peak acceleration after filtering (g) = 0.394

Accelerogramma Leonessa natural_6 - SLV

Time step ΔT (sec) = 0.01

Desired maximum acceleration (g) = 0.6473

Maximum frequency cut-off (Hz) = 25

Use frequency cut-off in calculation? Yes

Number of points for FFT = 32768

Import input motion from external file? Yes

Name of input file = I1.BAM1..HNN.

Total number of values read = 13299

Peak Acceleration in input file (g) = 0.6473

Time of peak acceleration (sec) = 39.160

Mean Square Frequency (Hz) = 2.488 Peak acceleration after filtering (g) = 0.648

Accelerogramma Leonessa natural_7 - SLV

Time step ΔT (sec) = 0.01

Desired maximum acceleration (g) = 0.2333

Maximum frequency cut-off (Hz) = 25

Use frequency cut-off in calculation? Yes

Number of points for FFT = 32768

Import input motion from external file ? Yes

Name of input file = TK.4101..HNE

Total number of values read = 5398

Peak Acceleration in input file (g) = 0.2333

Time of peak acceleration (sec) = 15.080

Mean Square Frequency (Hz) = 1.512

Peak acceleration after filtering (g) = 0.233

Dall'alto e da sinistra verso destra:

DATI di INPUT in EERA

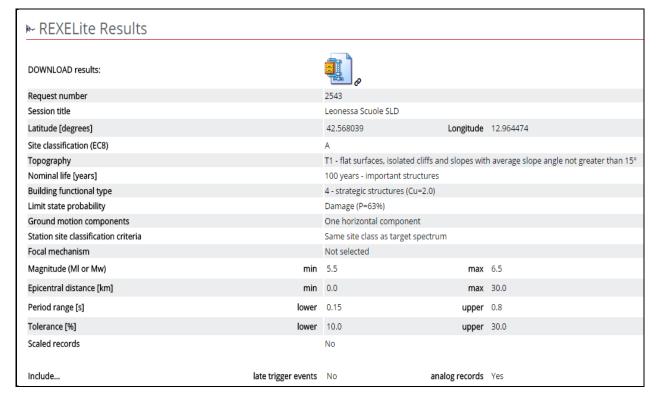
Leonessa_1; Leonessa_2;

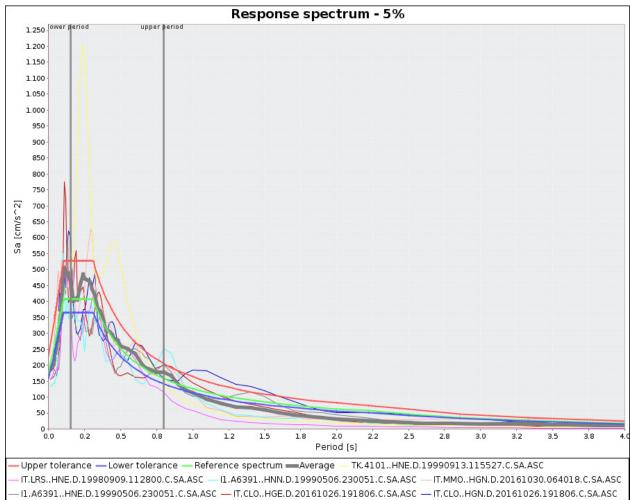
Leonessa_3; Leonessa_4;

Leonessa_5; Leonessa_6;

Leonessa_7

Stato limite SLV con Tr = 1898 anni




Ricerca degli accelerogrammi di Input per SLD - IV - T1

Network	Station code	Event time	Scale factor	Usable Bandwidth [Hz]	Orientation	Response spectrum
IT - Italian Strong Motion Network [DPC]	CLO	2016-10-26 19:18:06	1.0	39.93	HGE	
IT - Italian Strong Motion Network [DPC]	CLO	2016-10-26 19:18:06	1.0	39.93	HGN	1
IT - Italian Strong Motion Network [DPC]	ММО	2016-10-30 06:40:18	1.0	29.95	HGN	
I1 - Iranian Strong Motion Network [BHRC]	A6391	1999-05-06 23:00:51	1.0	39.9	HNE	M.,
I1 - Iranian Strong Motion Network [BHRC]	A6391	1999-05-06 23:00:51	1.0	39.9	HNN	
IT - Italian Strong Motion Network [DPC]	LRS	1998-09-09 11:28:00	1.0	25.3	HNE	1
TK - National Strong-Motion Network of Turkey (TR- NSMN) [AFAD]	4101	1999-09-13 11:55:27	1.0	34.7	HNE	1

Di seguito si riportano i riferimenti degli *Station Code* con le coordinate in WGS84.

CLO - Castelluccio di Norcia PG, Italy -- Latitudine 42.82940 N - Longitudine 13.20600

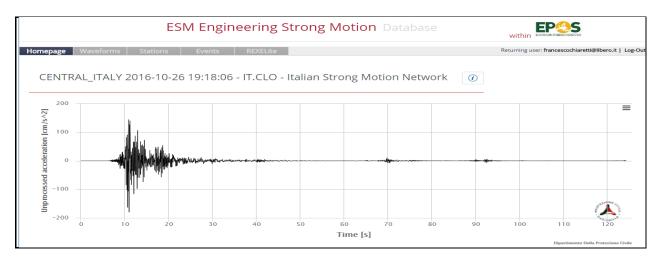
MMO - Montemonaco AP, Italy -- Latitudine 42.89930 N - Longitudine 13.32680

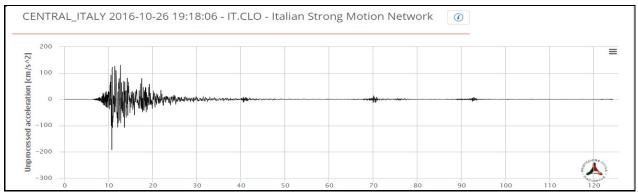
A6391 - Khanzaynoo, Iran -- Latitudine 29.66000 N - Longitudine 52.10000 E

LRS - Lauria PZ, Italy -- Latitudine 40.04664 N - Longitudine 15.83480 E

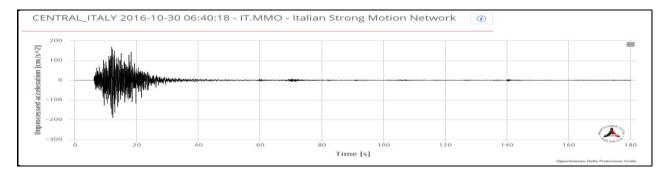
4101 - Izmit, Turkey -- Latitudine 40.76650 N - Longitudine 29.91721 E

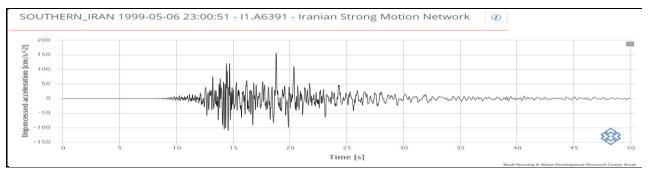
Quindi le caratteristiche sismiche di ogni accelerogramma.

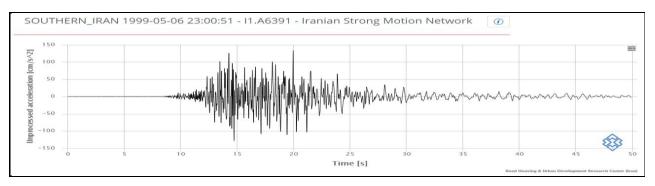


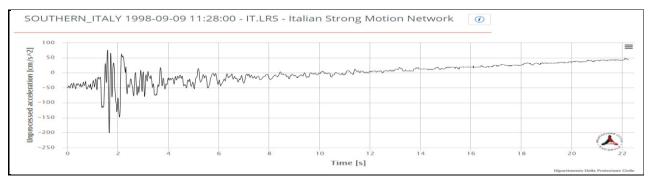


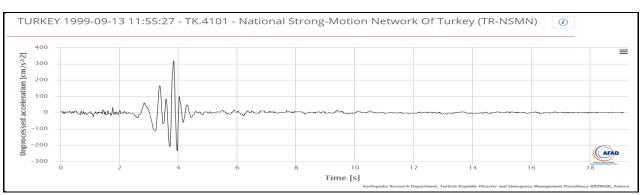
Station code	M_W	M _L	Style Fault	R epi. [km]	Orientation	PGA [cm/s^2]	PGV [cm/s^2]	PGD [cm]
CLO	5.9	5.9	Normal	10.8	Est-West	-179.955	12.321	-1.867
CLO	5.9	5.9	Normal	10.8	Nord-Sud	-189.398	12.811	2.897
ММО	6.5	6.1	Normal	19.2	Nord-Sud	-185.086	-11.423	9.155
A6391	6.2	6.1	Strike-slip	22.600	Est-West	156.232	-11.011	-2.957
A6391	6.2	6.1	Strike-slip	22.600	Nord-Sud	133.253	-7.337	1.218
LRS	5.6	5.5	Normal	18.000	Est-West	-156.169	-10.141	-0.716
4101	5.8	5.8	Normal	13.800	Est-West	317.084	-15.093	-1.757

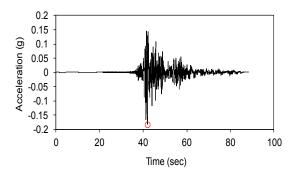

Ed infine le <u>7 tracce accelerometriche naturali</u> per <u>stato limite SLD</u> con <u>M</u> <u>compresa tra 5.5 e 6.5</u> più adatte al sito in oggetto, che sono state poi utilizzate come <u>input</u> per l'analisi monodimensionale di RSL.

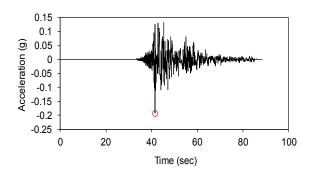


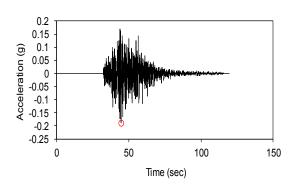


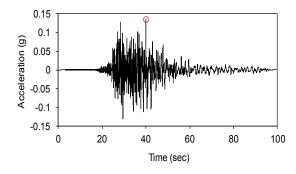


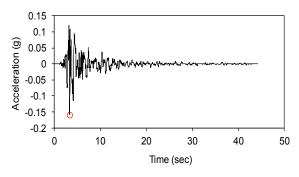


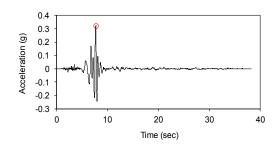







Nello stesso modo, *apportando la dovuta equivalenza tra cm/sec*^2 *e g*, è stato possibile estrarre le combinazioni delle <u>7 tracce accelerometriche naturali</u> per <u>stato</u> <u>limite SLD</u> con <u>M compresa tra 5.5 e 6.5</u> più adatte al sito in oggetto, che sono state poi utilizzate come <u>input</u> per l'analisi monodimensionale di RSL.





Dall'alto e da sinistra verso destra:

Spettri di Input

Leonessa_1; Leonessa_2;

Leonessa_3; Leonessa_4;

Leonessa_5; Leonessa_6;

Leonessa_7

Stato limite SLD con Tr = 201 anni

Accelerogramma Leonessa natural_1 - SLD

Time step ΔT (sec) = 0.01

Desired maximum acceleration (g) = 0.1834

Maximum frequency cut-off (Hz) = 25

Use frequency cut-off in calculation? Yes Number of points for FFT = 32768

Import input motion from external file? Yes

Name of input file = IT.CLO..HGE.

Total number of values read = 8852

Peak Acceleration in input file (g) = -0.1834

Time of peak acceleration (sec) = 41.870

Mean Square Frequency (Hz) = 2.595

Peak acceleration after filtering (g) = 0.183

Accelerogramma Leonessa natural_2 - SLD

Time step ΔT (sec) = 0.01

Desired maximum acceleration (g) = 0.1931

Maximum frequency cut-off (Hz) = 25

Use frequency cut-off in calculation? Yes

Number of points for FFT = 32768

Import input motion from external file ? Yes

Name of input file = IT.CLO..HGN

Total number of values read = 8852

Peak Acceleration in input file (q) = -0.1931

Time of peak acceleration (sec) = 41.390

Mean Square Frequency (Hz) = 2.189

Peak acceleration after filtering (g) = 0.193

Accelerogramma Leonessa natural_3 - SLD

Time step ΔT (sec) = 0.01

Desired maximum acceleration (g) = 0.1887

Maximum frequency cut-off (Hz) = 25

Use frequency cut-off in calculation? Yes

Number of points for FFT = 32768

Import input motion from external file? Yes

Name of input file = IT.MMO..HGN.

Total number of values read = 12000

Peak Acceleration in input file (g) = -0.1887

Time of peak acceleration (sec) = 44.500 Mean Square Frequency (Hz) = 3.392

Peak acceleration after filtering (g) = 0.193

Accelerogramma Leonessa natural_4 - SLD

Time step ΔT (sec) = 0.01

Maximum frequency cut-off (Hz) = 25

Use frequency cut-off in calculation? Yes

Number of points for FFT = 32768

Import input motion from external file ? Yes

Time of peak acceleration (sec) = 37.520

Accelerogramma Leonessa natural_5 - SLD

Time step ΔT (sec) = 0.01

Desired maximum acceleration (g) = 0.1358

Maximum frequency cut-off (Hz) = 25

Use frequency cut-off in calculation? Yes Number of points for FFT = 32768

Import input motion from external file ? Yes

Name of input file = I1.A6391..HNN.

Total number of values read = 9984

Peak Acceleration in input file (g) = 0.1358

Time of peak acceleration (sec) = 39.910

Mean Square Frequency (Hz) = 2.524

Peak acceleration after filtering (g) = 0.136

Desired maximum acceleration (g) = 0.1593

Name of input file = I1.A6391..HNE.

Total number of values read = 9984

Peak Acceleration in input file (g) = 0.1593

Mean Square Frequency (Hz) = 2.106

Peak acceleration after filtering (g) = 0.159

Accelerogramma Leonessa natural_6 - SLD

Time step ΔT (sec) = 0.01

Desired maximum acceleration (g) = 0.1591

Maximum frequency cut-off (Hz) = 25

Use frequency cut-off in calculation? Yes

Number of points for FFT = 32768 Import input motion from external file? Yes

Name of input file = IT.LRS..HNE.

Total number of values read = 4423

Peak Acceleration in input file (g) = -0.1591

Time of peak acceleration (sec) = 3.290

Mean Square Frequency (Hz) = 2.314

Peak acceleration after filtering (g) = 0.159

Accelerogramma Leonessa natural_7 - SLD

Time step ΔT (sec) = 0.01

Desired maximum acceleration (g) = 0.3232

Maximum frequency cut-off (Hz) = 25

Use frequency cut-off in calculation? Yes

Number of points for FFT = 32768 Import input motion from external file ? Yes

Name of input file = TK.4101..HNE.

Total number of values read = 3827

Peak Acceleration in input file (g) = 0.3232

Time of peak acceleration (sec) = 7.680

Mean Square Frequency (Hz) = 1.829

Peak acceleration after filtering (g) = 0.323

Dall'alto e da sinistra verso destra:

DATI di INPUT in EERA

Leonessa_1; Leonessa_2;

Leonessa_3; Leonessa_4;

Leonessa_5; Leonessa_6;

Leonessa_7.

Stato Limite **SLD** con Tr = 201 anni

MODELLAZIONE della RISPOSTA SISMICA LOCALE

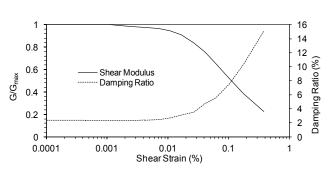
L'analisi di Risposta Sismica Locale è stata condotta, per maggiore accuratezza e precisione, prendendo a riferimento tutti i parametri litostratigrafici, geosismici e geotecnici ricavati dalla varie indagini - Sondaggi con SPT, Down – Hole, M.A.S.W. e Prove HVSR – che hanno consentito di definire il Modello geologico-geotecnico del terreno e la profondità del bedrock di riferimento con Vs > 800 m/sec.

Il **Substrato Sismico** è stato intercettato con le prospezioni geofisiche tra i 14 e i 20 metri e quindi è stato assunto alla profondità più cautelativa di **14 metri** che ben coincide con le formulazioni che legano le Vs con i valori di frequenza fondamentale del terreno. I parametri dei vari strati sono stati mediati tra i 2 DH e tra i 2 metodi di elaborazioni.

I valori del Coefficiente di Smorzamento dei terreni sono stati calcolati direttamente con il software EERA in base ai valori del Modulo di Taglio accertati per ogni sismostrato con la prova Down-Hole.

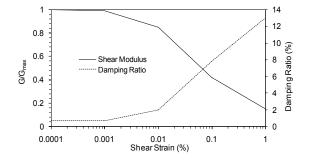
Dati di INPUT Sondaggi S_{DH} – DH – MASW - HVSR

Averaç	ge shear wa	ive velocity	period (s) = (m/sec) = sublayers =	752.71								
	Layer Number	Soil Material Type	Number of sublayers in layer	Thickness of layer (m)	Maximum shear modulus G_{max} (MPa)	Initial critical damping ratio (%)	Total unit weight (kN/m³)	Shear wave velocity (m/sec)	Location and type of earthquake input motion	Location of water table	Depth at middle of layer (m)	Vertical effective stress (kPa)
Surface	1	5		1.0	109.88		20.20	231			0.5	10.10
	2	4		3.0	683.21		22.40	547			2.5	53.80
	3	4		5.0	2166.28		23.35	954			6.5	145.77
	4	4		2.0	1234.86		22.67	731			10	226.82
	5	4		2.0	1709.171631		22.99	854			12	272.47998
	6	4		1.0	1221.247437		22.73	726			13.5	306.834991
Bedrock	7	3			3299.04		24.01	1161	Outcrop		14	318.20



Per ciò che concerne i valori delle curve dei diversi materiali relative ai parametri Strain (%), G/G_{max} e Damping (%) sono stati utilizzati per le argille e per i banchi ghiaiosi quelli forniti dalla Regione Lazio per "Argille e limi" (Mat 5) e "Ghiaie alluvionali e detriti" (Mat 4), mentre per il substrato quelli messi a disposizione dal software EERA per "Rock" (Mat 0).

Soil Material Type: 5


Strain (%)	G/G _{max}	Damping (%)
0.0001	1	2.35
0.00044	0.99999	2.35
0.00079	0.9999	2.35
0.0011	0.999	2.35
0.0017	0.99	2.35
0.0029	0.98	2.35
0.0042	0.975	2.39
0.0072	0.967	2.43
0.011	0.947	2.67
0.017	0.91	3.08
0.027	0.835	3.53
0.042	0.757	4.73
0.063	0.649	5.56
0.105	0.519	7.52
0.18	0.385	10.38
0.387	0.224	15.12

Soil Material Type: 4

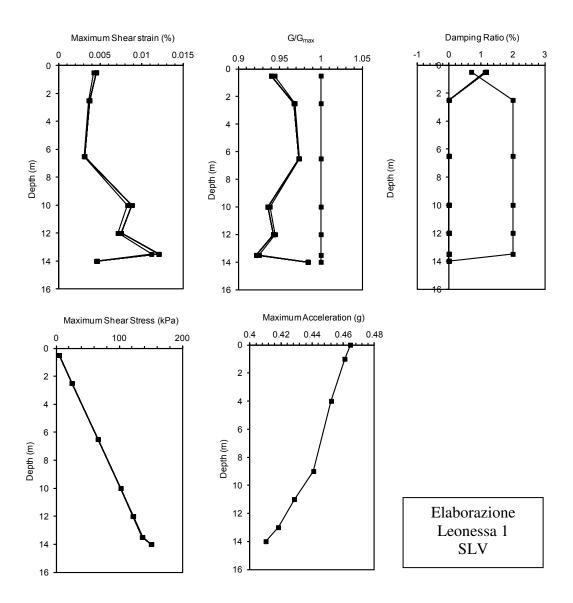
Moduli per Ghiaie alluvionali e detriti (Regione Lazio)


Strain (%)	G/G _{max}	Strain (%)	Damping (%)
0.0001	1	0.0001	0.7
0.001	0.99	0.001	0.7
0.01	0.85	0.01	2
0.1	0.42	0.1	7.8
1	0.15	1	13

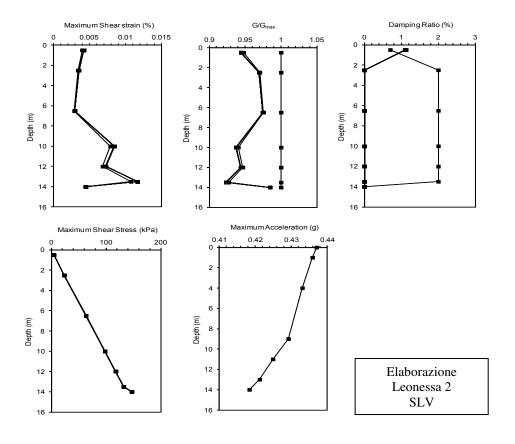
Soil Material Type: 0 - Bedrock

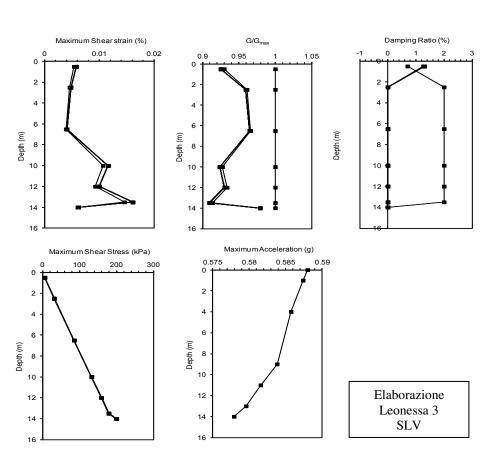
Attenuation of rock average and damping in rock

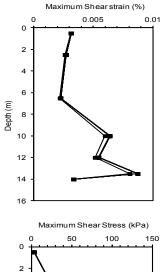
	•	•	•	•
	Strain (%)	G/G _{max}	Strain (%)	Damping (%)
_	0.0001	1	0.0001	0.4
	0.0003	1	0.001	0.8
	0.001	0.9875	0.01	1.5
	0.003	0.9525	0.1	3
	0.01	0.9	1	4.6
	0.03	0.81		
	0.1	0.725		
	1	0.55		

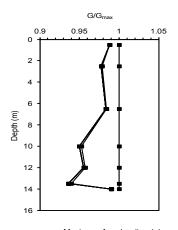


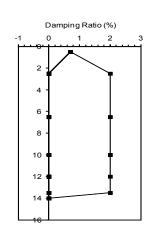
RISULTATI di CALCOLO RISPOSTA SISMICA LOCALE Stato limite Salvaguardia della Vita – "SLV"

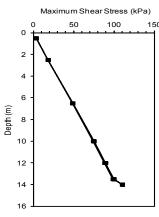

I risultati delle analisi per SLV con il modulo EERA per ciò che attiene alle diverse ITERAZIONI riferite ad ogni accelerogramma di input sono riportate nei seguenti grafici.

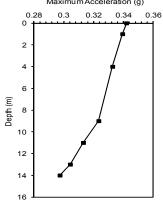


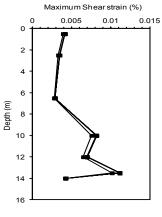


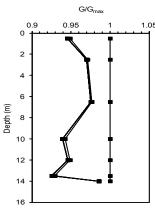


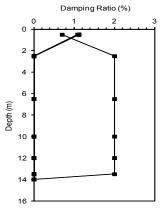


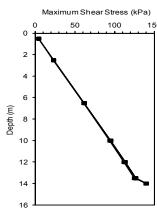


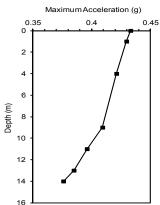


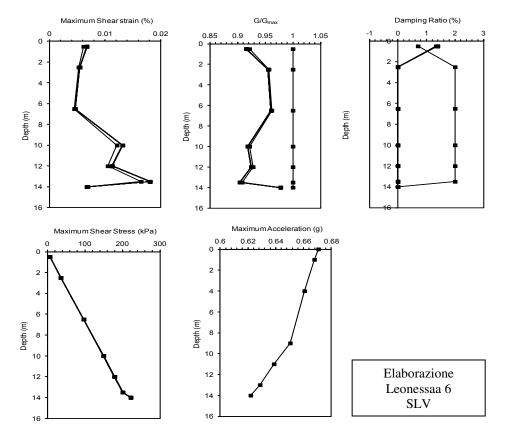


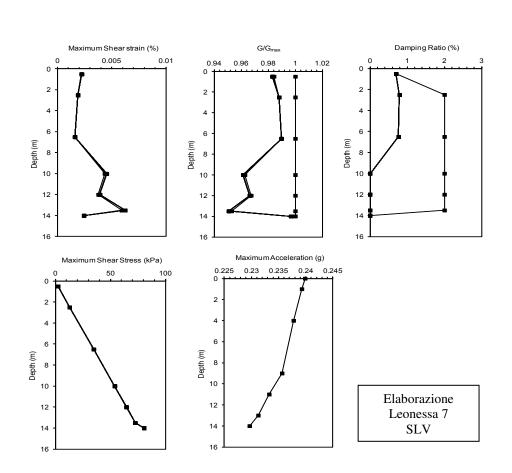




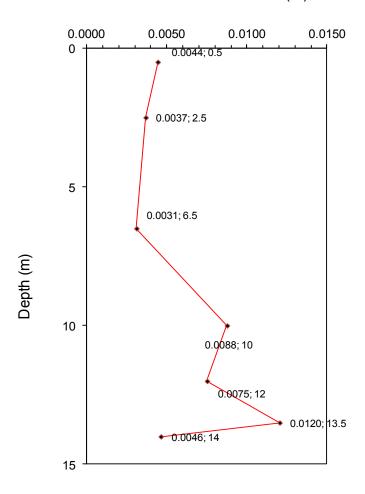







Elaborazione Leonessa 5 SLV

Comune di LEONESSA ADEGUAMENTO SISMICO "SCUOLA DELL'INFANZIA" DI LEONESSA

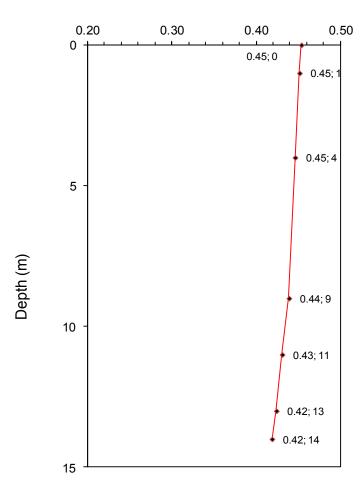


La tabella il grafico seguenti riportano l'andamento della e **DEFORMAZIONE di TAGLIO massima dal bedrock alla superficie**, sempre per le elaborazioni SLV dei 7 spettri elastici di accelerazione al 5% dello smorzamento critico di RSL, sia separatamente, sia con il valore medio.

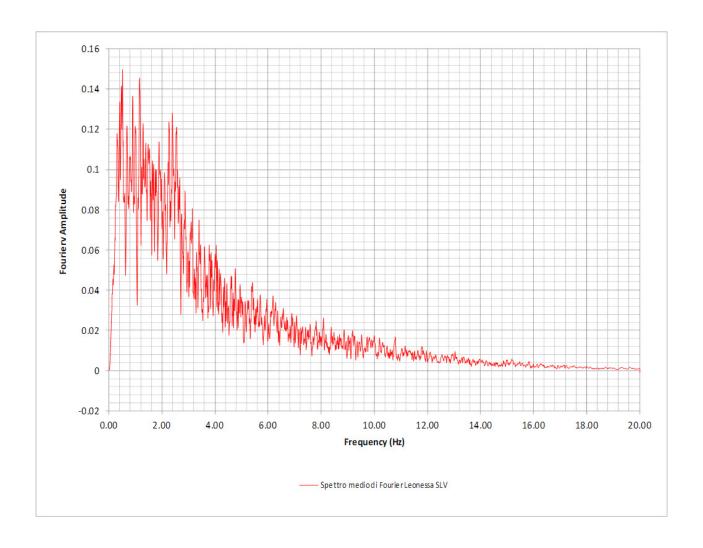
Depth at top of sublayer (m)	Maximum Shear strain 1 (%)	Maximum Shear strain 2 (%)	Maximum Shear strain 3 (%)	Maximum Shear strain 4 (%)	Maximum Shear strain 5 (%)	Maximum Shear strain 6 (%)	Maximum Shear strain 7 (%)	Mean Maximum Shear strain (%) SLV
0.5	0.004562371	0.004248921	0.005826645	0.003169888	0.004188902	0.006771667	0.002243323	0.0044
2.5	0.003752056	0.003541051	0.00482067	0.002733388	0.003488103	0.005505232	0.00190789	0.0037
6.5	0.003148784	0.002996755	0.004089548	0.002292446	0.002924824	0.004645064	0.001620786	0.0031
10	0.008849888	0.008474365	0.011642396	0.006407784	0.008203114	0.013185976	0.004536456	0.0088
12	0.007563127	0.007282376	0.010022942	0.005477702	0.007002869	0.011303189	0.003906539	0.0075
13.5	0.012099681	0.01170474	0.016141435	0.008741567	0.011190575	0.018138882	0.006240634	0.0120
14	0.004642382	0.004518459	0.006182223	0.003381097	0.0042976	0.006890707	0.002450565	0.0046

Maximum Shear strain (%)

Andamento della deformazione tangenziale con la profondità derivante dalla media delle 7 calcolazioni per SLV

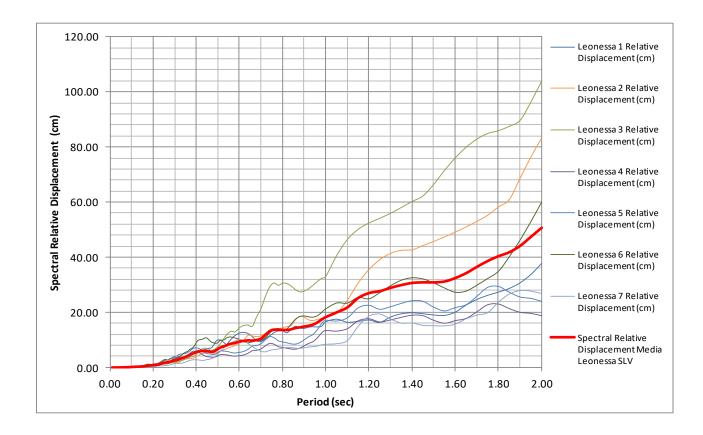


La tabella e il grafico seguenti riportano <u>l'andamento</u> dell'ACCELERAZIONE massima dal bedrock alla superficie, sempre per le elaborazioni SLV dei 7 spettri elastici di accelerazione al 5% dello smorzamento critico di RSL, sia separatamente, sia con il valore medio.


Depth at top of sublayer (m)	Maximum acceleration 1 (g)	Maximum acceleration 2 (g)	Maximum acceleration 3 (g)	Maximum acceleration 4 (g)	Maximum acceleration 5 (g)	Maximum acceleration 6 (g)	Maximum acceleration 7 (g)	Mean Maximum acceleration (g)
0	0.46	0.44	0.59	0.34	0.43	0.67	0.24	0.45
1	0.46	0.44	0.59	0.34	0.43	0.67	0.24	0.45
4	0.45	0.43	0.59	0.33	0.42	0.66	0.24	0.45
9	0.44	0.43	0.58	0.32	0.41	0.65	0.24	0.44
11	0.43	0.42	0.58	0.31	0.40	0.64	0.23	0.43
13	0.42	0.42	0.58	0.30	0.38	0.63	0.23	0.42
14	0.41	0.42	0.58	0.30	0.38	0.62	0.23	0.42

Maximum Acceleration (g)

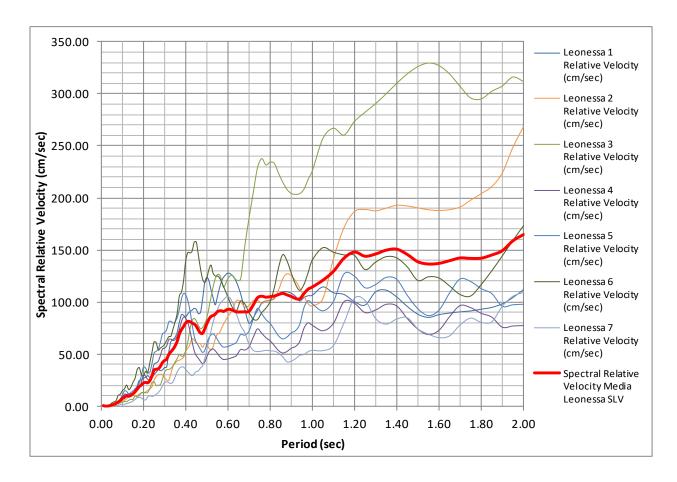
Andamento dell'accelerazione con la profondità derivante dalla media delle 7 calcolazioni per SLV


Il grafico seguente riporta lo <u>spettro medio di FOURIER</u> riferito alle elaborazioni **SLV** dei 7 spettri elastici di accelerazione al 5% dello smorzamento critico di RSL.

Il grafico seguente riporta lo spettro medio SPOSTAMENTO riferito alle elaborazioni SLV dei 7 spettri elastici di accelerazione al 5% dello smorzamento critico di RSL i cui risultati di dettaglio sono riportati nella tabella.

Period (sec)	Leonessa 1 Relative Displacement (cm)	Leonessa 2 Relative Displacement (cm)	Leonessa 3 Relative Displacement (cm)	Leonessa 4 Relative Displacement (cm)	Leonessa 5 Relative Displacement (cm)	Leonessa 6 Relative Displacement (cm)	Leonessa 7 Relative Displacement (cm)	Spectral Relative Displacement Media Leonessa SLV
0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.02	0.00	0.00	0.01	0.00	0.00	0.01	0.00	0.00
0.03	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01
0.04	0.02	0.02	0.02	0.01	0.02	0.03	0.01	0.02
0.05	0.03	0.03	0.04	0.02	0.03	0.05	0.02	0.03
0.06	0.05	0.04	0.05	0.04	0.05	0.07	0.02	0.05
0.07	0.06	0.05	0.07	0.06	0.07	0.10	0.03	0.06
0.08	0.09	0.07	0.10	0.08	0.10	0.16	0.04	0.09
0.09	0.14	0.09	0.12	0.13	0.16	0.20	0.05	0.13
0.10	0.16	0.15	0.15	0.18	0.23	0.27	0.07	0.17
0.11	0.18	0.18	0.18	0.24	0.31	0.36	0.08	0.22

0.12	0.25	0.22	0.23	0.29	0.36	0.42	0.11	0.27
0.13	0.30	0.26	0.29	0.28	0.35	0.44	0.13	0.29
0.14	0.30	0.26	0.33	0.32	0.40	0.52	0.14	0.33
0.15	0.34	0.34	0.39	0.33	0.41	0.71	0.19	0.39
0.16	0.45	0.40	0.46	0.39	0.49	0.85	0.22	0.47
0.17	0.65	0.45	0.57	0.45	0.56	1.11	0.31	0.59
0.18	0.79	0.53	0.70	0.54	0.68	1.21	0.36	0.69
0.19	0.83	0.58	0.78	0.75	0.94	1.04	0.38	0.76
0.20	0.94	0.71	0.74	0.97	1.23	1.13	0.36	0.87
0.21	1.02	0.76	0.75	0.97	1.23	1.36	0.38	0.92
0.22	1.22	0.86	0.86	1.03	1.30	1.39	0.49	1.02
0.23	1.20	1.04	1.01	1.27	1.60	1.81	0.57	1.21
0.24	1.39	1.11	1.14	1.58	2.00	2.28	0.59	1.44
0.25	1.60	1.35	1.14	1.93	2.45	2.80	0.64	1.70
0.26	1.72	1.57	1.22	2.04	2.58	2.85	0.73	1.81
0.27	1.79	1.66	1.38	2.17	2.75	2.71	0.83	1.90
0.28	1.88	1.71	1.59	2.48	3.13	3.21	0.98	2.14
0.29	1.98	1.73	1.78	2.92	3.69	3.40	1.21	2.39
0.30	2.15	1.77	1.97	3.11	3.93	3.49	1.40	2.55
0.31	2.24	1.85	2.16	3.35	4.24	3.68	1.48	2.71
0.32	2.75	1.93	2.31	3.74	4.72	4.05	1.51	3.00
0.33	3.34	2.39	2.49	3.83	4.85	4.40	1.53	3.26
0.34	3.59	2.79	2.75	3.86	4.88	5.11	1.67	3.52
0.35	4.14	2.99	3.09	4.01	5.08	5.53	1.98	3.83
0.36	4.55	3.17	3.38	4.26	5.39	5.88	2.31	4.13
0.37	5.09	3.25	3.77	4.70	5.95	6.54	2.56	4.55
0.38	5.72	3.36	3.96	5.20	6.58	7.00	2.73	4.93
0.39	5.91	3.51	4.13	5.54	7.01	7.72	2.81	5.23
0.40	5.87	3.96	4.78	5.58	7.06	9.09	2.80	5.59
0.41	6.02	4.41	5.56	5.48	6.93	9.92	2.73	5.87
0.42	6.20	4.81	6.32	5.18	6.55	10.13	2.62	5.97
0.43	6.33	5.11	6.85	4.66	5.89	10.31	2.52	5.95
0.44	6.51	5.31	7.02	4.18	5.29	10.72	2.69	5.96
0.45	6.75	5.41	6.86	3.96	5.01	10.64	2.88	5.93
0.46	6.98	5.39	6.50	3.88	4.91	9.88	2.96	5.78
0.47	7.14	5.28	6.21	3.76	4.76	9.20	3.25	5.66
0.48	8.06	5.12	6.44	3.70	4.68	8.97	3.49	5.78
0.49	9.37	5.35	6.88	3.86	4.88	8.74	4.15	6.17
0.50	9.97	5.58	7.54	4.29	5.43	9.03	4.94	6.68
0.51	9.90	5.89	8.48	4.65	5.88	9.79	5.75	7.19
0.52	9.44	6.19	9.59	4.72	5.97	9.98	6.59	7.50
0.53	8.88	6.50	10.76	4.66	5.89	10.03	7.32	7.72
0.54	8.34	6.82	11.81	4.60	5.82	10.73	7.92	8.01
0.55	9.20	7.12	12.60	4.47	5.65	11.03	8.43	8.36
0.56	10.09	7.40	13.09	4.31	5.45	11.06	8.89	8.61

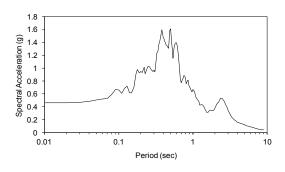


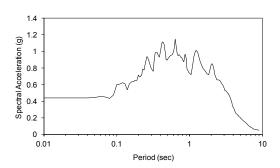
8.76	9.27	10.91	5.28	4.18	13.07	7.70	10.89	0.57
8.87	9.59	10.70	5.23	4.14	12.88	7.99	11.57	0.58
9.40	10.16	10.15	5.45	4.31	14.41	8.83	12.46	0.60
9.62	9.73	9.39	5.81	4.60	15.23	9.89	12.69	0.62
9.81	8.66	8.96	6.58	5.21	15.37	11.66	12.26	0.64
9.76	7.56	9.31	7.76	6.14	14.98	11.45	11.09	0.66
9.98	6.64	9.79	7.93	6.27	18.50	11.20	9.56	0.68
10.48	5.83	9.83	8.62	6.82	21.39	11.49	9.37	0.70
11.84	5.67	10.83	9.98	7.89	25.74	12.30	10.44	0.72
13.17	6.20	12.53	11.12	8.80	29.19	12.89	11.47	0.74
13.73	6.51	13.80	10.72	8.48	30.65	13.33	12.59	0.76
13.57	6.68	14.15	9.60	7.59	29.80	13.91	13.29	0.78
13.64	7.04	13.73	9.21	7.29	30.58	14.41	13.23	0.80
13.57	7.25	14.06	8.89	7.03	30.42	14.83	12.53	0.82
13.85	7.23	15.79	8.50	6.73	29.50	15.29	13.89	0.84
14.31	6.98	17.55	8.44	6.68	28.20	17.42	14.90	0.86
14.53	6.91	18.51	9.00	7.12	27.41	18.51	14.25	0.88
14.84	7.18	18.69	10.00	7.91	27.70	18.28	14.14	0.90
15.14	7.39	18.39	11.07	8.76	28.54	17.27	14.54	0.92
15.51	7.54	18.25	11.88	9.40	29.77	17.06	14.71	0.94
16.28	7.75	18.74	13.56	10.73	31.11	17.43	14.66	0.96
17.35	8.20	19.90	15.82	12.52	32.28	17.82	14.90	0.98
18.28	8.40	21.29	17.03	13.47	33.03	18.25	16.51	1.00
19.97	8.64	23.37	16.77	13.27	40.56	19.73	17.46	1.05
21.76	9.74	23.35	17.89	14.15	46.41	24.45	16.35	1.10
25.19	14.91	25.41	21.52	17.02	50.11	30.67	16.68	1.15
26.97	18.60	24.90	22.43	17.75	52.37	35.57	17.14	1.20
27.66	19.35	27.13	20.99	16.60	54.09	39.14	16.32	1.25
28.87	17.54	29.66	21.93	17.35	55.92	41.43	18.22	1.30
29.87	16.08	31.66	23.13	18.30	58.02	42.52	19.40	1.35
30.64	16.11	32.53	24.09	19.06	60.19	42.72	19.77	1.40
30.85	15.26	32.11	23.86	18.88	62.20	44.22	19.42	1.45
30.84	15.14	30.68	21.74	17.20	66.40	45.76	18.97	1.50
31.16	15.09	28.82	20.41	16.14	71.47	47.38	18.81	1.55
32.42	15.73	27.29	21.61	17.09	76.02	49.15	20.02	1.60
34.18	17.63	27.71	22.62	17.89	79.84	51.01	22.56	1.65
36.46	18.96	29.86	25.67	20.31	82.81	53.04	24.60	1.70
38.59	19.89	32.28	28.91	22.87	84.83	55.25	26.08	1.75
40.33	23.69	34.91	29.23	23.13	85.87	58.28	27.24	1.80
41.76	26.59	40.16	27.14	21.47	87.45	60.96	28.57	1.85
44.07	27.87	46.22	25.42	20.11	89.58	68.67	30.59	1.90
47.34	27.67	52.89	24.92	19.71	96.26	76.34	33.61	1.95
50.63	26.81	60.02	23.87	18.88	103.87	83.30	37.62	2.00

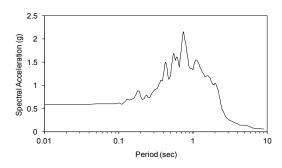
Il grafico seguente riporta lo spettro medio VELOCITA' riferito alle elaborazioni SLV dei 7 spettri elastici di accelerazione al 5% dello smorzamento critico di RSL i cui risultati di dettaglio sono riportati nella tabella.

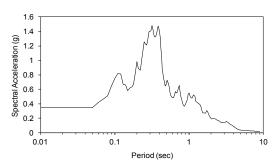
Period (sec)	Leonessa 1 Relative Velocity (cm/sec)	Leonessa 2 Relative Velocity (cm/sec)	Leonessa 3 Relative Velocity (cm/sec)	Leonessa 4 Relative Velocity (cm/sec)	Relative Relative Velocity Velocity		Leonessa 7 Relative Velocity (cm/sec)	Spectral Relative Velocity Media Leonessa SLV
0.01	0.73	0.68	0.92	0.53	0.68	1.05	0.37	0.71
0.02	0.11	0.09	0.08	0.13	0.17	0.23	0.05	0.12
0.03	0.25	0.22	0.18	0.31	0.39	0.56	0.11	0.29
0.04	0.49	0.47	0.34	0.58	0.74	1.27	0.20	0.58
0.05	0.94	0.99	0.58	0.96	1.22	3.38	0.33	1.20
0.06	1.56	1.28	1.07	1.88	2.38	4.36	0.52	1.86
0.07	2.96	2.33	1.77	2.90	3.68	5.49	0.66	2.83
0.08	4.23	3.01	2.53	3.38	4.29	10.32	1.02	4.11
0.09	5.80	4.32	3.12	5.60	7.12	11.65	1.63	5.60
0.10	6.98	4.85	3.94	8.66	11.02	15.01	1.97	7.49
0.11	7.24	5.55	4.45	11.71	14.88	16.88	1.87	8.94

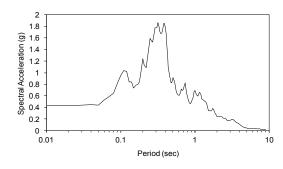
0.12	10.28	7.09	4.31	11.37	14.43	20.43	2.55	10.07
0.13	12.47	9.29	5.72	9.03	11.46	16.11	3.18	9.61
0.14	11.86	9.38	6.60	10.43	13.23	18.10	3.87	10.50
0.15	11.99	10.61	6.47	11.74	14.89	22.93	4.91	11.93
0.16	13.35	10.13	9.73	13.29	16.84	26.88	6.49	13.82
0.17	19.45	10.18	9.04	15.20	19.27	35.00	8.10	16.60
0.18	24.63	11.90	10.45	17.57	22.25	37.16	8.55	18.93
0.19	25.27	12.62	12.98	23.20	29.39	30.54	7.96	20.28
0.20	26.91	12.95	13.11	29.91	37.88	29.19	6.32	22.32
0.21	27.78	13.72	12.95	29.04	36.77	33.58	6.23	22.87
0.22	29.30	15.32	13.21	25.89	32.78	31.97	8.90	22.48
0.23	27.75	16.70	17.13	25.65	32.47	41.62	10.11	24.49
0.24	27.29	18.71	22.49	32.33	40.90	51.41	9.46	28.94
0.25	30.51	24.87	23.55	40.53	51.27	61.57	10.05	34.62
0.26	32.56	28.59	19.96	41.79	52.88	61.07	11.36	35.46
0.27	35.13	30.27	20.29	43.52	55.05	53.93	13.08	35.89
0.28	34.10	30.79	20.66	48.71	61.61	55.83	15.66	38.20
0.29	34.95	30.32	26.09	55.11	69.72	57.22	19.75	41.88
0.30	37.15	27.50	32.71	56.02	70.87	59.47	22.91	43.80
0.31	37.72	25.09	35.03	58.39	73.86	63.11	23.35	45.22
0.32	52.19	24.84	35.28	64.28	81.30	66.78	22.62	49.61
0.33	62.03	31.76	36.40	64.64	81.76	67.13	21.89	52.23
0.34	64.00	38.34	38.82	63.34	80.11	74.06	23.49	54.59
0.35	66.37	41.25	42.70	64.37	81.42	80.89	28.23	57.89
0.36	70.99	43.51	45.83	67.70	85.62	89.57	33.13	62.34
0.37	80.77	44.31	49.61	73.83	93.37	105.81	36.36	69.15
0.38	87.81	45.34	48.10	81.66	103.27	109.22	37.78	73.31
0.39	87.21	47.07	48.55	85.88	108.62	120.32	37.49	76.45
0.40	85.64	52.49	53.60	84.76	107.20	139.14	35.63	79.78
0.41	88.55	56.07	61.81	80.46	101.76	147.12	32.96	81.25
0.42	90.70	59.37	73.64	73.16	92.53	146.86	30.95	81.03
0.43	92.05	64.82	82.00	62.90	79.54	148.29	29.25	79.84
0.44	93.81	63.85	84.36	53.69	67.89	156.94	31.07	78.80
0.45	92.93	60.95	82.03	48.85	61.77	157.32	33.26	76.73
0.46	88.80	60.45	77.62	46.26	58.50	144.97	33.95	72.93
0.47	89.84	60.04	74.40	43.29	54.74	131.86	36.71	70.13
0.48	102.70	56.61	75.63	41.08	51.94	121.84	38.84	69.80
0.49	118.08	60.14	78.84	42.45	53.67	118.58	45.32	73.87
0.50	123.75	59.39	84.93	47.53	60.09	122.49	54.20	78.91
0.51	120.32	55.77	94.19	52.25	66.07	130.85	63.20	83.23
0.52	111.61	54.61	104.76	54.30	68.66	135.17	72.51	85.95
0.53	103.99	57.10	114.73	55.20	69.80	127.30	80.84	87.00
0.54	97.23	64.62	122.37	53.48	67.62	124.74	87.35	88.20
0.55	104.90	69.39	126.30	50.96	64.43	124.76	92.70	90.49
0.56	113.18	70.53	126.08	48.25	61.00	122.95	97.28	91.32
0.50	113.10	10.33	120.00	70.23	01.00	166.33	31.20	31.32

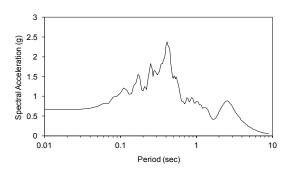


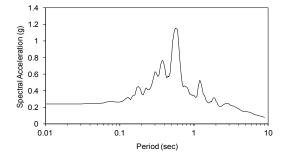

0.57	119.77	75.14	121.29	46.07	58.25	118.93	100.36	91.40
0.58	123.84	79.22	114.14	45.04	56.95	114.32	102.32	90.83
0.60	127.60	86.31	122.69	45.59	57.64	104.67	105.46	92.85
0.62	125.59	91.89	125.83	46.90	59.30	95.15	100.52	92.17
0.64	119.27	101.50	121.23	48.79	61.69	91.31	88.93	90.39
0.66	108.02	100.30	121.99	54.63	69.07	100.78	77.56	90.34
0.68	92.57	95.50	153.75	54.17	68.48	97.93	70.75	90.45
0.70	79.57	96.81	180.60	57.28	72.42	89.92	59.64	90.89
0.72	84.96	101.34	204.99	66.45	84.01	83.56	53.79	97.01
0.74	91.81	102.15	228.92	74.50	94.18	83.06	52.46	103.87
0.76	98.68	98.82	237.85	70.40	89.01	89.62	52.93	105.33
0.78	101.06	101.01	231.77	66.05	83.50	94.01	53.65	104.44
0.80	101.42	102.34	234.42	63.08	79.75	100.29	53.19	104.93
0.82	103.72	103.26	233.21	58.41	73.85	113.66	52.94	105.58
0.84	107.90	111.79	223.78	53.59	67.76	132.80	51.08	106.96
0.86	109.63	122.73	215.18	51.32	64.89	145.20	47.34	108.04
0.88	109.71	127.25	208.13	52.79	66.74	139.12	42.56	106.61
0.90	108.35	125.53	204.36	55.91	70.69	127.70	43.32	105.12
0.92	105.44	120.66	203.51	57.57	72.78	116.92	45.58	103.21
0.94	100.93	113.69	204.20	62.30	78.77	111.03	48.91	102.83
0.96	104.22	105.91	208.35	74.98	94.81	116.55	49.65	107.78
0.98	105.99	98.63	217.86	80.42	101.69	127.86	52.44	112.13
1.00	106.45	96.58	226.12	77.97	98.57	140.00	53.70	114.20
1.05	114.39	103.34	257.15	72.73	91.94	151.80	53.39	120.68
1.10	108.81	141.76	266.99	79.88	100.98	147.48	58.28	129.17
1.15	107.15	171.64	260.52	100.70	127.31	144.93	80.13	141.77
1.20	100.14	187.18	273.68	98.97	125.12	144.37	103.68	147.59
1.25	97.10	189.10	282.42	90.19	114.02	130.86	101.50	143.60
1.30	109.72	187.79	290.69	92.71	117.20	138.05	84.18	145.76
1.35	111.28	190.38	300.12	98.12	124.05	143.22	78.81	149.42
1.40	104.68	193.18	310.19	96.56	122.07	142.04	83.73	150.35
1.45	95.64	192.46	319.25	84.43	106.73	133.35	84.99	145.26
1.50	88.24	190.64	326.22	74.27	93.90	120.48	74.28	138.29
1.55	85.23	188.87	329.57	69.05	87.29	123.99	69.17	136.17
1.60	87.82	188.13	327.17	73.18	92.51	122.83	65.84	136.78
1.65	89.36	188.94	319.12	86.20	108.97	115.23	67.57	139.34
1.70	90.51	191.47	307.20	96.94	122.55	107.03	78.07	141.97
1.75	91.41	198.07	296.08	94.94	120.03	105.63	84.61	141.54
1.80	93.04	204.31	295.17	89.52	113.17	116.57	80.56	141.76
1.85	94.78	211.23	302.49	85.81	108.49	129.68	81.05	144.79
1.90	98.28	224.24	307.63	76.13	96.26	143.98	96.03	148.94
1.95	104.18	248.83	316.19	77.30	97.72	158.69	105.56	158.35
2.00	111.82	268.67	311.84	77.67	98.19	172.78	109.21	164.31






I risultati degli spettri di Accelerazione delle analisi per SLV con il modulo EERA sono riportati nei seguenti 7 spettri elastici di ACCELERAZIONE al 5% dello smorzamento critico di RSL.





Dall'alto e da sinistra verso destra: Spettri elastici di accelerazione di RSL Leonessa_1; Leonessa_2; Leonessa_3; Leonessa_4; Leonessa_5; Leonessa_6; Leonessa _7. Stato limite SLV con Tr = 1898 anni

RISULTATO CALCOLO AMPLIFICAZIONE

RISULTATO CALCOLO AMPLIFICAZIONE

RISULTATO CALCOLO AMPLIFICAZIONE

LOCALE PER ACCELEROGRAMMA "2"

LOCALE PER ACCELEROGRAMMA "1"

ADEGUAMENTO SISMICO "SCUOLA DELL'INFANZIA" DI LEONESSA

Number of sublayer = 1

Type of sublayer = Outcrop

Ratio of critical Damping (%) = 5 Depth at top of sublayer (m) = 0

Maximum Spectral Acceleration (g) = 1.6131

Maximum Spectral Velocity (cm/s) = 223.2231

Number of sublayer = 1

Type of sublayer = Outcrop

Ratio of critical Damping (%) = 5

Depth at top of sublayer (m) = 0

Maximum Spectral Acceleration (g) = 1.1510

Maximum Spectral Velocity (cm/s) = 301.3932

Number of sublayer = 1

Ratio of critical Damping (%) = 5

Depth at top of sublayer (m) = 0

Maximum Spectral Acceleration (g) = 2.1555 Maximum Spectral Velocity (cm/s) = 348.7826

Type of sublayer = Outcrop **LOCALE PER ACCELEROGRAMMA "3"**

Stato limite SLV

Stato limite SLV

Stato limite SLV

Number of sublayer = 1

Type of sublayer = Outcrop

Ratio of critical Damping (%) = 5

Depth at top of sublayer (m) = 0Maximum Spectral Acceleration (g) = 2.1555

Maximum Spectral Velocity (cm/s) = 348.7826

RISULTATO CALCOLO AMPLIFICAZIONE **LOCALE PER ACCELEROGRAMMA "3"**

Stato limite SLV

Number of sublayer = 1

Type of sublayer = Outcrop

Ratio of critical Damping (%) = 5

Depth at top of sublayer (m) = 0

Maximum Spectral Acceleration (g) = 1.8676 Maximum Spectral Velocity (cm/s) = 127.3057

RISULTATO CALCOLO AMPLIFICAZIONE **LOCALE PER ACCELEROGRAMMA "5"**

Stato limite SLV

Number of sublayer = 1

Type of sublayer = Outcrop

Ratio of critical Damping (%) = 5

Depth at top of sublayer (m) = 0

Maximum Spectral Acceleration (g) = 2.3818

Maximum Spectral Velocity (cm/s) = 380.3615

RISULTATO CALCOLO AMPLIFICAZIONE **LOCALE PER ACCELEROGRAMMA "6"**

Stato limite SLV

Number of sublayer = 1

Type of sublayer = Outcrop

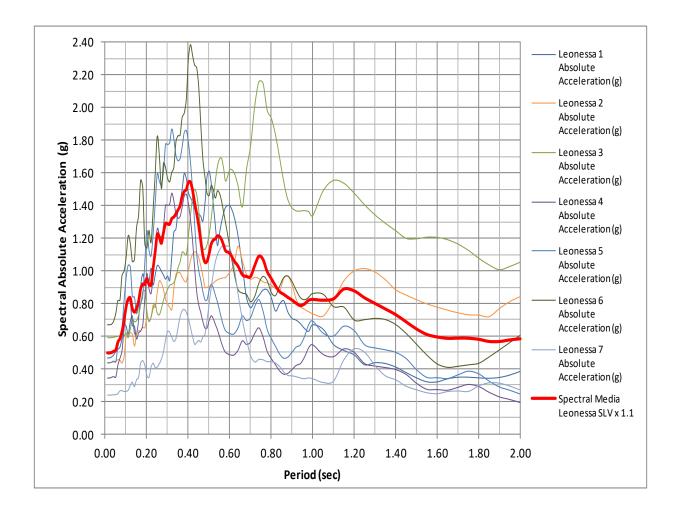
Ratio of critical Damping (%) = 5

Depth at top of sublayer (m) = 0

Maximum Spectral Acceleration (g) = 1.1541

Maximum Spectral Velocity (cm/s) = 137.5150

RISULTATO CALCOLO AMPLIFICAZIONE LOCALE PER ACCELEROGRAMMA "7"


Stato limite SLV

Dati di Accelerazione Locale in OUTPUT in EERA (Spectra) per ogni singolo accelerogramma in Input – Stato Limite SLV

Da questi 7 spettri elastici di accelerazione in RSL è stato calcolato lo spettro elastico medio di accelerazione in RSL per lo Stato Limite di Salvaguardia della Vita "SLV" che viene rappresentato nel grafico seguente incrementato cautelativamente del 10% in virtù della sismicità locale e dei risultati degli studi di MS3.

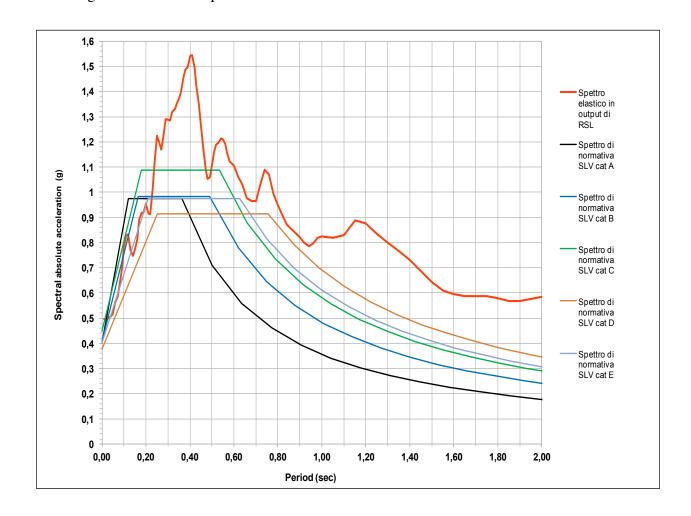
Spettri di risposta di RSL in riferimento agli accelerogrammi naturali Rexelilte e spettro elastico medio di RSL su stratigrafia sismica S_{DH} - DH - MASW - HVSR per Edificio Scolastico di Leonessa - Classe IV - T1 Stato Limite di Salvaguardia della Vita (SLV) - Tr = 1898 anni

Di seguito, in riferimento alla figura precedente, si riporta la tabella dei valori dei sette spettri di amplificazione e dello spettro elastico medio di RSL - Stato Limite SLV - Tr = 1898 anni per il periodo compreso nell'intervallo tra 0.01 sec e 2.0 sec

Period (sec)	Leonessa 1 Absolute Acceleration (g)	Leonessa 2 Absolute Acceleration (g)	Leonessa 3 Absolute Acceleration (g)	Leonessa 4 Absolute Acceleration (g)	Leonessa 5 Absolute Acceleration (g)	Leonessa 6 Absolute Acceleration (g)	Leonessa 7 Absolute Acceleration (g)	Spectral Media Leonessa SLV
0.01	0.46	0.44	0.59	0.34	0.43	0.67	0.24	0,50
0.02	0.46	0.44	0.59	0.34	0.43	0.67	0.24	0,50
0.03	0.47	0.44	0.59	0.35	0.44	0.67	0.24	0,50
0.04	0.48	0.44	0.59	0.35	0.44	0.69	0.24	0,51
0.05	0.50	0.44	0.59	0.35	0.44	0.74	0.24	0,52
0.06	0.52	0.46	0.60	0.42	0.53	0.82	0.25	0,56
0.07	0.53	0.45	0.60	0.46	0.59	0.82	0.27	0,58
0.08	0.58	0.43	0.60	0.51	0.65	0.97	0.27	0,63
0.09	0.67	0.47	0.60	0.64	0.82	1.00	0.26	0,70
0.10	0.66	0.60	0.62	0.75	0.95	1.08	0.26	0,78
0.11	0.61	0.61	0.59	0.81	1.03	1.22	0.27	0,83
0.12	0.69	0.62	0.64	0.81	1.02	1.17	0.30	0,83
0.13	0.72	0.61	0.70	0.66	0.84	1.06	0.32	0,77
0.14	0.62	0.54	0.69	0.66	0.84	1.07	0.29	0,75
0.15	0.61	0.61	0.69	0.58	0.74	1.26	0.33	0,77
0.16	0.70	0.63	0.73	0.62	0.78	1.34	0.35	0,81
0.17	0.90	0.63	0.79	0.63	0.80	1.56	0.44	0,89
0.18	0.98	0.65	0.87	0.67	0.84	1.51	0.45	0,92
0.19	0.93	0.65	0.88	0.83	1.05	1.16	0.42	0,92
0.20	0.94	0.71	0.75	0.98	1.24	1.14	0.36	0,95
0.21	0.93	0.69	0.69	0.89	1.13	1.25	0.35	0,92
0.22	1.02	0.71	0.71	0.86	1.09	1.17	0.41	0,91
0.23	0.91	0.79	0.77	0.96	1.22	1.37	0.43	1,02
0.24	0.97	0.78	0.80	1.11	1.41	1.59	0.41	1,12
0.25	1.03	0.87	0.74	1.26	1.59	1.82	0.41	1,22
0.26	1.02	0.94	0.73	1.22	1.55	1.71	0.43	1,20
0.27	1.00	0.92	0.77	1.21	1.53	1.50	0.46	1,17
0.28	0.97	0.88	0.82	1.27	1.61	1.66	0.51	1,23
0.29	0.95	0.83	0.85	1.40	1.78	1.63	0.58	1,29
0.30	0.97	0.80	0.88	1.40	1.77	1.56	0.63	1,29
0.31	0.94	0.78	0.91	1.41	1.78	1.54	0.62	1,29



0.32	1.09	0.76	0.91	1.48	1.87	1.60	0.59	1,32
0.33	1.24	0.89	0.93	1.43	1.81	1.63	0.57	1,33
0.34	1.26	0.98	0.96	1.35	1.71	1.79	0.58	1,35
0.35	1.37	0.99	1.02	1.32	1.67	1.83	0.65	1,37
0.36	1.42	0.99	1.05	1.33	1.69	1.83	0.72	1,40
0.37	1.50	0.96	1.11	1.39	1.76	1.94	0.76	1,45
0.38	1.60	0.94	1.11	1.46	1.85	1.96	0.76	1,49
0.39	1.57	0.93	1.09	1.47	1.86	2.05	0.75	1,50
0.40	1.48	1.00	1.21	1.41	1.79	2.29	0.71	1,54
0.41	1.45	1.06	1.33	1.32	1.67	2.38	0.65	1,54
0.42	1.42	1.10	1.45	1.19	1.50	2.32	0.60	1,50
0.43	1.38	1.12	1.50	1.02	1.29	2.26	0.55	1,42
0.44	1.36	1.11	1.47	0.87	1.10	2.24	0.56	1,35
0.45	1.35	1.08	1.37	0.79	1.00	2.12	0.57	1,28
0.46	1.33	1.03	1.24	0.74	0.94	1.89	0.57	1,18
0.47	1.31	0.97	1.14	0.69	0.87	1.68	0.59	1,10
0.48	1.41	0.90	1.13	0.65	0.82	1.57	0.61	1,05
0.49	1.58	0.90	1.16	0.65	0.82	1.47	0.70	1,06
0.50	1.61	0.90	1.22	0.69	0.88	1.46	0.80	1,10
0.51	1.54	0.91	1.32	0.72	0.91	1.52	0.89	1,16
0.52	1.41	0.92	1.43	0.71	0.89	1.50	0.98	1,19
0.53	1.28	0.94	1.55	0.67	0.85	1.44	1.05	1,20
0.54	1.16	0.94	1.64	0.64	0.81	1.49	1.10	1,21
0.55	1.23	0.95	1.68	0.60	0.76	1.47	1.13	1,21
0.56	1.30	0.95	1.69	0.56	0.70	1.43	1.15	1,19
0.57	1.36	0.96	1.63	0.52	0.66	1.36	1.15	1,16
0.58	1.39	0.96	1.55	0.50	0.63	1.29	1.15	1,12
0.60	1.40	0.99	1.62	0.48	0.61	1.14	1.14	1,11
0.62	1.34	1.04	1.60	0.48	0.61	0.99	1.02	1,06
0.64	1.21	1.15	1.52	0.51	0.65	0.88	0.86	1,03
0.66	1.03	1.06	1.39	0.57	0.72	0.86	0.70	0,98
0.68	0.84	0.98	1.62	0.55	0.69	0.86	0.58	0,97
0.70	0.77	0.95	1.76	0.56	0.71	0.81	0.48	0,97
0.72	0.81	0.96	2.01	0.62	0.78	0.84	0.44	1,03
0.74	0.85	0.95	2.16	0.65	0.82	0.92	0.46	1,09
0.76	0.88	0.93	2.15	0.59	0.75	0.97	0.46	1,07
0.78	0.88	0.92	1.98	0.50	0.64	0.94	0.44	1,00
0.80	0.84	0.91	1.93	0.46	0.58	0.87	0.44	0,95
0.82	0.75	0.89	1.83	0.42	0.53	0.85	0.44	0,91
0.84	0.80	0.88	1.69	0.39	0.49	0.91	0.41	0,87
0.86	0.82	0.95	1.54	0.37	0.46	0.96	0.38	0,86
0.88	0.75	0.97	1.43	0.37	0.47	0.97	0.36	0,84
0.90	0.71	0.91	1.38	0.39	0.50	0.93	0.36	0,82
0.92	0.70	0.83	1.36	0.42	0.53	0.88	0.35	0,80
0.94	0.68	0.78	1.36	0.43	0.54	0.84	0.34	0,79



0.96	0.65	0.76	1.37	0.47	0.59	0.82	0.34	0,80
0.98	0.63	0.75	1.36	0.53	0.67	0.84	0.35	0,82
1.00	0.67	0.74	1.34	0.54	0.69	0.86	0.34	0,82
1.05	0.64	0.72	1.49	0.49	0.61	0.86	0.32	0,82
1.10	0.55	0.82	1.55	0.47	0.60	0.78	0.33	0,83
1.15	0.51	0.94	1.53	0.52	0.66	0.78	0.46	0,89
1.20	0.48	1.00	1.47	0.50	0.63	0.70	0.52	0,88
1.25	0.42	1.01	1.40	0.43	0.54	0.70	0.50	0,83
1.30	0.44	0.99	1.34	0.42	0.52	0.71	0.42	0,80
1.35	0.43	0.94	1.29	0.41	0.51	0.70	0.36	0,77
1.40	0.41	0.88	1.24	0.39	0.50	0.67	0.33	0,73
1.45	0.37	0.85	1.20	0.36	0.46	0.62	0.29	0,69
1.50	0.34	0.82	1.19	0.31	0.39	0.55	0.27	0,64
1.55	0.32	0.80	1.20	0.27	0.34	0.48	0.25	0,61
1.60	0.32	0.78	1.20	0.27	0.34	0.43	0.25	0,59
1.65	0.34	0.76	1.19	0.27	0.34	0.41	0.26	0,59
1.70	0.35	0.74	1.16	0.28	0.36	0.42	0.27	0,59
1.75	0.35	0.73	1.12	0.30	0.38	0.43	0.26	0,59
1.80	0.34	0.73	1.07	0.29	0.37	0.44	0.30	0,58
1.85	0.34	0.72	1.03	0.25	0.32	0.47	0.31	0,57
1.90	0.34	0.77	1.00	0.23	0.29	0.52	0.31	0,57
1.95	0.36	0.81	1.02	0.21	0.26	0.56	0.29	0,58
2.00	0.38	0.84	1.05	0.19	0.24	0.61	0.27	0,58

Il grafico seguente riporta, a puro titolo indicativo, il confronto tra lo spettro elastico medio di RSL e gli spettri di normativa NTC 2018 inerenti le diverse categorie di sottosuolo per SLV.

Confronto, a puro titolo indicativo, tra lo spettro elastico medio di RSL per SLV e gli spettri di NTC 2018 inerenti le diverse Categorie di Sottosuolo di Fondazione Edificio Scolastico di Leonessa - Classe IV - Categoria topografia T1 Stato Limite di Salvaguardia della Vita (SLV) – Tr = 1898 anni

In riferimento al grafico precedente, si riportato i punti degli spettri di risposta di NTC 2018 per SLV inerenti le diverse Categorie di Sottosuolo di Fondazione ricavati con il foglio di calcolo *Spettri-NTC ver. 1.0.3.* rilasciato dal Consiglio Superiore LL.PP. per lo Stato Limite SLV – Vita nominale Vn=100 anni – Coefficiente d'Uso Cu=2 e Vita di Riferimento Vr=200 anni – Categoria topografica T1 (St = 1.00).

Le righe con fondo grigio rappresentano, dall'alto, TB, TC e TD

Ts	Se (g)	Ī	Ts	Se (g)						
0.000	0.402		0.000	0.406	0.000	0.448	0.000	0.377	0.000	0.402
0.122	0.974		0.164	0.984	0.178	1.087	0.252	0.914	0.209	0.974
0.365	0.974		0.491	0.984	0.534	1.087	0.755	0.914	0.628	0.974
0.500	0.710		0.620	0.779	0.661	0.878	0.872	0.792	0.751	0.815
0.635	0.559		0.749	0.644	0.789	0.736	0.988	0.698	0.873	0.700
0.771	0.461		0.879	0.550	0.916	0.634	1.105	0.624	0.996	0.614
0.906	0.392		1.008	0.479	1.043	0.556	1.222	0.565	1.119	0.546
1.042	0.341		1.138	0.425	1.171	0.496	1.339	0.515	1.242	0.492
1.177	0.302		1.267	0.381	1.298	0.447	1.456	0.474	1.365	0.448
1.312	0.271		1.396	0.346	1.425	0.407	1.572	0.439	1.488	0.411
1.448	0.245		1.526	0.317	1.553	0.374	1.689	0.409	1.611	0.380
1.583	0.224		1.655	0.292	1.680	0.345	1.806	0.382	1.733	0.353
1.719	0.207		1.785	0.271	1.807	0.321	1.923	0.359	1.856	0.329
1.854	0.192		1.914	0.252	1.935	0.300	2.040	0.338	1.979	0.309
1.989	0.179		2.043	0.236	2.062	0.281	2.157	0.320	2.102	0.291
2.125	0.167		2.173	0.222	2.189	0.265	2.273	0.304	2.225	0.275
2.260	0.157		2.302	0.210	2.317	0.251	2.390	0.289	2.348	0.260
2.395	0.148		2.432	0.199	2.444	0.237	2.507	0.275	2.471	0.248
2.531	0.140		2.561	0.189	2.571	0.226	2.624	0.263	2.594	0.236
2.666	0.133		2.690	0.180	2.699	0.215	2.741	0.252	2.716	0.225
2.802	0.127		2.820	0.171	2.826	0.205	2.857	0.242	2.839	0.215
2.937	0.121		2.949	0.164	2.953	0.197	2.974	0.232	2.962	0.206
3.072	0.116		3.078	0.157	3.081	0.188	3.091	0.223	3.085	0.198
3.208	0.111		3.208	0.151	3.208	0.181	3.208	0.215	3.208	0.191
3.246	0.108		3.246	0.147	3.246	0.177	3.246	0.210	3.246	0.186

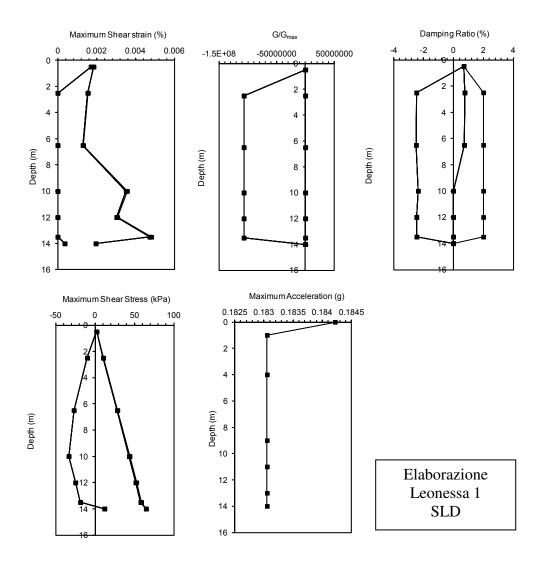
 \mathbf{A}

B

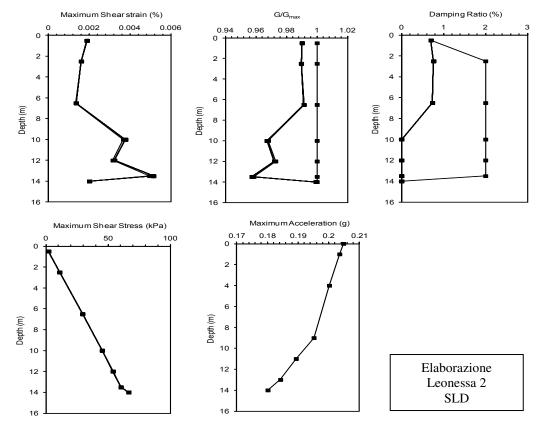
 \mathbf{C}

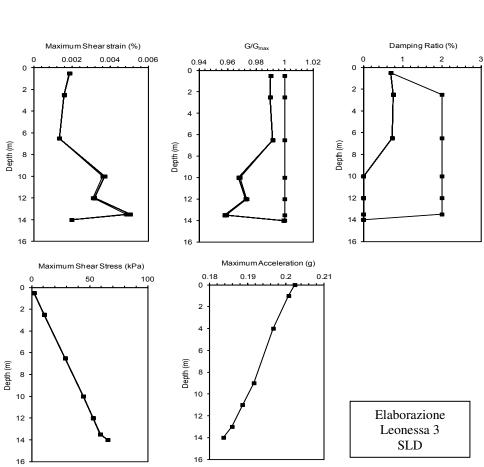
D

E

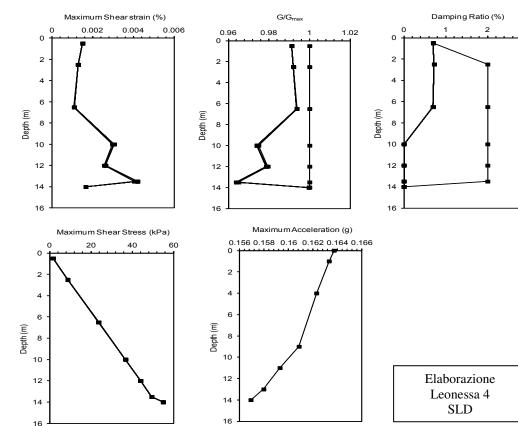


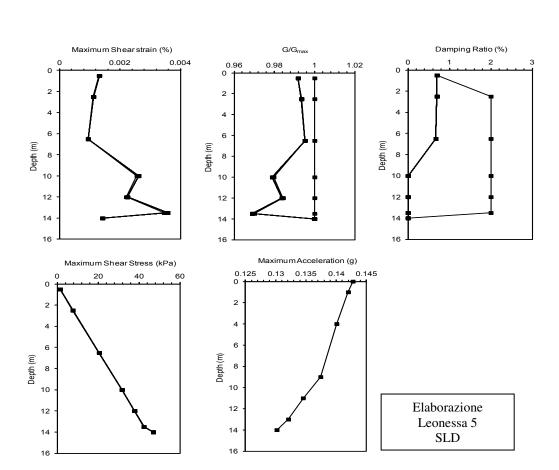
RISULTATI di CALCOLO RISPOSTA SISMICA LOCALE Stato limite Salvaguardia di Danno – "SLD"



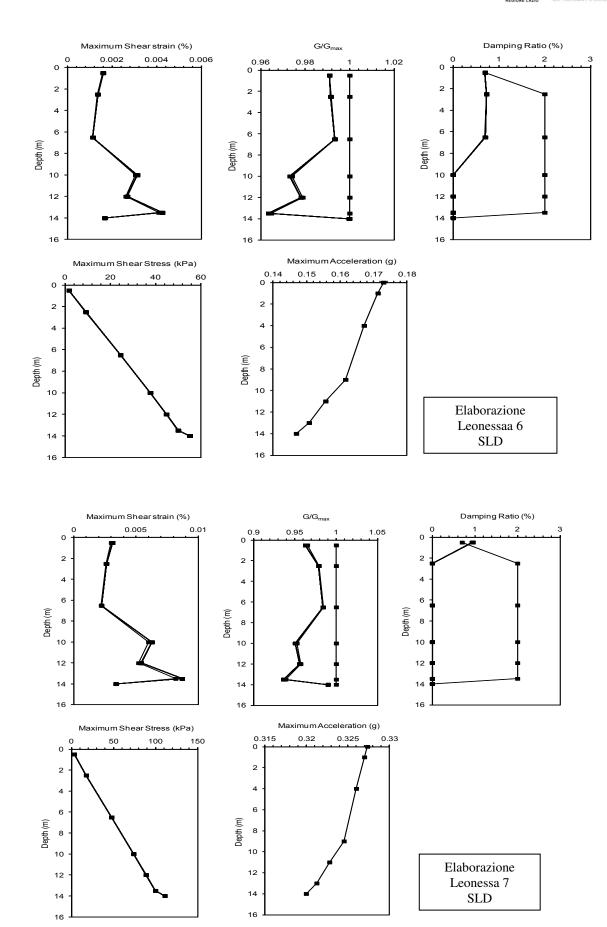


I risultati delle analisi per **SLD** con il modulo EERA per ciò che attiene alle diverse **ITERAZIONI riferite ad ogni accelerogramma di input** sono riportate nei seguenti grafici.





16



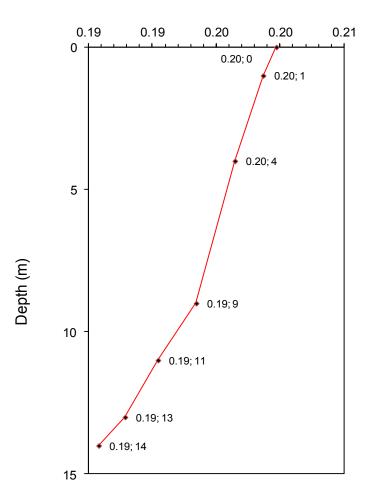


La tabella il grafico seguenti riportano l'andamento della e **DEFORMAZIONE di TAGLIO massima dal bedrock alla superficie**, sempre per le elaborazioni SLD dei 7 spettri elastici di accelerazione al 5% dello smorzamento critico di RSL, sia separatamente, sia con il valore medio.

Depth at top of sublayer (m)	Maximum Shear strain 1 (%)	Maximum Shear strain 2 (%)	Maximum Shear strain 3 (%)	Maximum Shear strain 4 (%)	Maximum Shear strain 5 (%)	Maximum Shear strain 6 (%)	Maximum Shear strain 7 (%)	Mean Maximum Shear strain (%) SLD
0.5	0.001848049	0.001904491	0.001879103	0.001517787	0.001322118	0.001604237	0.003131121	0.0019
2.5	0.001536138	0.001623798	0.001599352	0.001296266	0.00112529	0.001361799	0.002630579	0.0016
6.5	0.001297881	0.00137014	0.001346324	0.001101249	0.0009514	0.001143199	0.002231578	0.0013
10	0.003513654	0.003786257	0.003717477	0.00305639	0.002621027	0.003140497	0.00629568	0.0037
12	0.003025133	0.003242353	0.003180781	0.002632345	0.002249824	0.002682922	0.005425653	0.0032
13.5	0.004737056	0.005150653	0.005050059	0.004202434	0.003581064	0.004253685	0.008717144	0.0051
14	0.001965086	0.002019856	0.001984159	0.001668025	0.001424075	0.001674842	0.003398038	0.0020

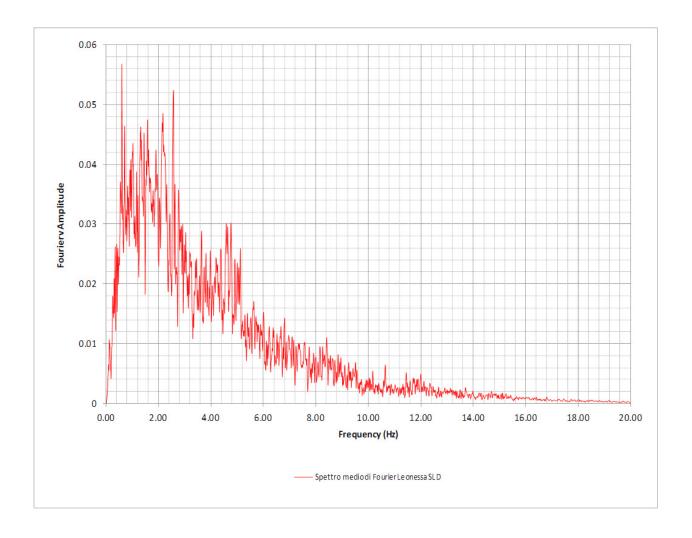
Maximum Shear strain (%)

Andamento della deformazione tangenziale con la profondità derivante dalla media delle 7 calcolazioni per SLD

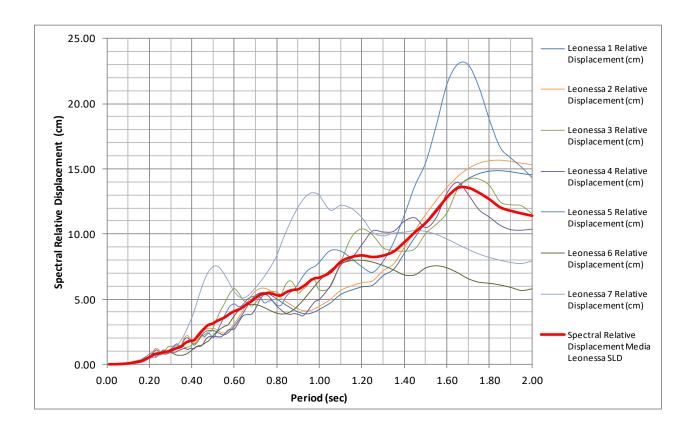


La tabella il grafico seguenti riportano l'andamento e dell'ACCELERAZIONE massima dal bedrock alla superficie, sempre per le elaborazioni SLD dei 7 spettri elastici di accelerazione al 5% dello smorzamento critico di RSL, sia separatamente, sia con il valore medio.

Depth at top of sublayer (m)	Maximum acceleration 1 (g)	Maximum acceleration 2 (g)	Maximum acceleration 3 (g)	Maximum acceleration 4 (g)	Maximum acceleration 5 (g)	Maximum acceleration 6 (g)	Maximum acceleration 7 (g)	Mean Maximum acceleration (g)
0	0.18	0.20	0.20	0.16	0.14	0.17	0.33	0.20
1	0.18	0.20	0.20	0.16	0.14	0.17	0.33	0.20
4	0.18	0.20	0.20	0.16	0.14	0.17	0.33	0.20
9	0.18	0.20	0.19	0.16	0.14	0.16	0.32	0.19
11	0.18	0.19	0.19	0.16	0.13	0.16	0.32	0.19
13	0.18	0.18	0.19	0.16	0.13	0.15	0.32	0.19
14	0.18	0.18	0.18	0.16	0.13	0.15	0.32	0.19


Maximum Acceleration (g)

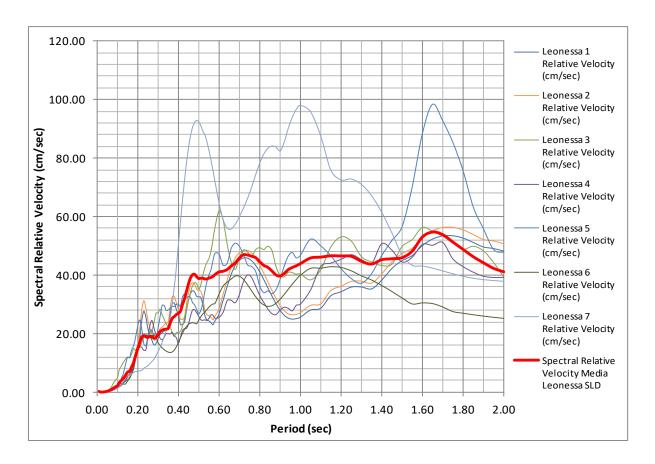
Andamento dell'accelerazione con la profondità derivante dalla media delle 7 calcolazioni per SLD


Il grafico seguente riporta lo <u>spettro medio di FOURIER</u> riferito alle elaborazioni **SLD** dei 7 spettri elastici di accelerazione al 5% dello smorzamento critico di RSL.

Il grafico seguente riporta lo spettro medio SPOSTAMENTO riferito alle elaborazioni SLD dei 7 spettri elastici di accelerazione al 5% dello smorzamento critico di RSL i cui risultati di dettaglio sono riportati nella tabella.

Leonessa 1 Relative Displacement (cm)	Leonessa 2 Relative Displacement (cm)	Leonessa 3 Relative Displacement (cm)	Leonessa 4 Relative Displacement (cm)	Leonessa 5 Relative Displacement (cm)	Leonessa 6 Relative Displacement (cm)	Leonessa 7 Relative Displacement (cm)	Spectral Relative Displacement Media Leonessa SLD
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01
0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02
0.03	0.03	0.03	0.02	0.03	0.03	0.04	0.03
0.04	0.05	0.06	0.03	0.03	0.03	0.06	0.04
0.05	0.06	0.08	0.04	0.04	0.04	0.08	0.06
0.06	0.08	0.11	0.05	0.06	0.05	0.10	0.07
0.09	0.11	0.15	0.05	0.08	0.06	0.12	0.10
	Relative Displacement (cm) 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.05 0.06	Relative Displacement (cm) Relative Displacement (cm) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.05 0.05 0.06 0.06 0.08	Relative Displacement (cm) Relative Displacement (cm) Relative Displacement (cm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.04 0.05 0.06 0.05 0.06 0.08 0.06 0.08 0.11	Relative Displacement (cm) Relative Displacement (cm) Relative Displacement (cm) Relative Displacement (cm) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.05 0.06 0.03 0.05 0.06 0.08 0.04 0.06 0.08 0.01 0.05	Relative Displacement (cm) Dool 0.00 0.01 0.01 0.01 <th< td=""><td>Relative Displacement (cm) Relative Displacement (cm) Dool <th< td=""><td>Relative Displacement (cm) Relative Displacement (cm) Displacement (cm) Dool 0.00</td></th<></td></th<>	Relative Displacement (cm) Dool Dool <th< td=""><td>Relative Displacement (cm) Relative Displacement (cm) Displacement (cm) Dool 0.00</td></th<>	Relative Displacement (cm) Displacement (cm) Dool 0.00

0.12	0.09	0.11	0.21	0.07	0.12	0.08	0.14	0.12
0.13	0.10	0.11	0.25	0.09	0.17	0.09	0.17	0.14
0.14	0.12	0.13	0.28	0.13	0.24	0.10	0.19	0.17
0.15	0.14	0.16	0.31	0.19	0.32	0.13	0.20	0.21
0.16	0.17	0.19	0.32	0.18	0.35	0.17	0.23	0.23
0.17	0.23	0.25	0.39	0.23	0.46	0.23	0.26	0.29
0.18	0.30	0.33	0.49	0.29	0.56	0.33	0.31	0.37
0.19	0.41	0.47	0.50	0.38	0.67	0.43	0.38	0.46
0.20	0.52	0.58	0.53	0.47	0.80	0.53	0.44	0.55
0.21	0.70	0.79	0.55	0.54	0.88	0.60	0.49	0.65
0.22	0.95	1.07	0.70	0.55	0.79	0.67	0.54	0.75
0.23	1.09	1.23	0.81	0.55	0.63	0.73	0.60	0.80
0.24	1.05	1.17	0.83	0.65	0.72	0.77	0.65	0.84
0.25	0.88	1.00	0.82	0.86	0.87	0.78	0.71	0.85
0.26	0.84	0.94	0.88	1.04	0.96	0.79	0.77	0.89
0.27	0.78	0.87	0.96	1.10	1.02	0.91	0.86	0.93
0.28	0.79	0.86	1.20	1.01	0.94	0.99	0.94	0.96
0.29	0.84	0.92	1.37	0.95	0.97	0.99	1.02	1.01
0.30	0.95	1.04	1.37	0.97	1.15	0.93	1.11	1.07
0.31	1.06	1.16	1.40	0.93	1.30	0.84	1.23	1.13
0.32	1.13	1.24	1.42	0.92	1.49	0.76	1.36	1.19
0.33	1.23	1.33	1.43	0.98	1.57	0.71	1.49	1.25
0.34	1.32	1.43	1.43	1.08	1.45	0.70	1.64	1.29
0.35	1.39	1.50	1.40	1.13	1.47	0.69	1.86	1.35
0.36	1.75	1.88	1.36	1.21	1.54	0.71	2.15	1.52
0.37	1.99	2.15	1.29	1.21	1.66	0.77	2.49	1.65
0.38	2.03	2.20	1.32	1.12	1.76	0.85	2.84	1.73
0.39	1.84	1.99	1.37	1.22	1.88	0.96	3.22	1.78
0.40	1.65	1.78	1.51	1.22	1.84	1.09	3.60	1.81
0.41	1.48	1.59	1.61	1.18	1.80	1.23	4.05	1.85
0.42	1.59	1.71	1.65	1.32	1.99	1.34	4.56	2.02
0.43	1.85	1.99	1.78	1.36	2.17	1.42	5.09	2.24
0.44	2.10	2.26	2.03	1.38	2.26	1.44	5.60	2.44
0.45	2.32	2.49	2.19	1.51	2.23	1.50	6.07	2.62
0.46	2.47	2.65	2.28	1.78	2.13	1.61	6.50	2.77
0.47	2.56	2.73	2.40	2.01	2.29	1.71	6.86	2.94
0.48	2.59	2.76	2.48	2.11	2.37	1.81	7.14	3.04
0.49	2.59	2.76	2.52	2.13	2.21	2.02	7.34	3.08
0.50	2.57	2.73	2.83	2.13	2.05	2.21	7.47	3.14
0.51	2.55	2.72	3.21	2.13	2.24	2.38	7.54	3.25
0.52	2.45	2.60	3.59	2.12	2.58	2.54	7.51	3.34
0.53	2.36	2.51	3.96	2.09	2.91	2.68	7.39	3.42
0.54	2.29	2.43	4.28	2.14	3.25	2.79	7.19	3.48
0.55	2.27	2.40	4.58	2.26	3.62	2.89	6.95	3.57
0.56	2.31	2.44	4.88	2.45	3.94	2.96	6.68	3.67

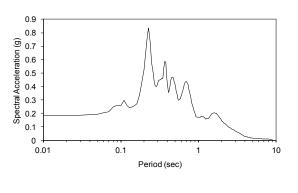


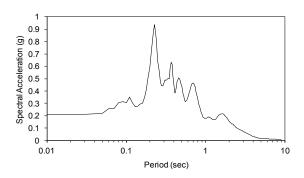
3.78	6.40	3.03	4.23	2.62	5.20	2.56	2.41	0.57
3.90	6.10	3.25	4.48	2.69	5.50	2.72	2.56	0.58
4.08	5.55	3.75	4.64	2.71	5.81	3.13	2.95	0.60
4.20	5.19	4.13	4.42	3.22	5.47	3.60	3.40	0.62
4.39	5.08	4.40	4.58	3.70	4.96	4.12	3.89	0.64
4.64	5.22	4.55	4.99	3.81	4.73	4.73	4.46	0.66
4.83	5.52	4.61	5.17	3.84	4.48	5.26	4.96	0.68
5.10	5.89	4.58	5.25	4.28	4.75	5.62	5.30	0.70
5.34	6.28	4.49	5.14	4.96	5.20	5.81	5.47	0.72
5.42	6.71	4.36	4.72	5.34	5.44	5.84	5.50	0.74
5.46	7.20	4.19	4.84	5.23	5.59	5.73	5.41	0.76
5.41	7.74	4.04	4.86	4.84	5.61	5.53	5.22	0.78
5.30	8.36	3.92	4.54	4.45	5.54	5.29	5.00	0.80
5.29	9.23	3.86	4.55	4.17	5.40	5.05	4.78	0.82
5.49	10.04	3.88	5.13	3.92	6.11	4.83	4.57	0.84
5.64	10.78	4.00	5.49	3.83	6.42	4.61	4.36	0.86
5.72	11.45	4.22	5.73	3.88	6.15	4.41	4.17	0.88
5.76	12.05	4.51	6.17	3.83	5.47	4.24	4.01	0.90
5.94	12.55	4.86	6.70	3.71	5.74	4.12	3.90	0.92
6.18	12.92	5.25	7.12	3.99	6.00	4.09	3.87	0.94
6.46	13.12	5.66	7.38	4.44	6.55	4.14	3.92	0.96
6.61	13.12	6.05	7.53	4.82	6.41	4.27	4.04	0.98
6.65	12.93	6.43	7.85	4.98	5.71	4.46	4.22	1.00
7.05	11.81	7.21	8.72	5.99	5.94	4.96	4.69	1.05
7.86	12.17	7.73	8.68	7.60	7.85	5.66	5.36	1.10
8.22	11.94	7.96	8.13	8.11	9.75	6.00	5.68	1.15
8.35	11.22	7.98	7.48	9.17	10.40	6.26	5.94	1.20
8.23	10.10	7.83	7.06	10.20	9.92	6.40	6.07	1.25
8.34	9.84	7.57	7.92	10.13	8.95	7.18	6.80	1.30
8.66	10.05	7.23	9.41	10.19	8.74	7.71	7.31	1.35
9.38	10.12	6.85	11.50	10.97	8.69	8.99	8.53	1.40
10.14	10.24	6.87	13.75	11.20	8.89	10.29	9.76	1.45
10.86	10.17	7.40	15.50	10.46	10.07	11.49	10.90	1.50
11.77	9.94	7.56	18.37	11.25	10.77	12.58	11.94	1.55
12.81	9.59	7.40	21.51	13.12	11.65	13.56	12.87	1.60
13.52	9.18	7.02	23.01	13.93	13.47	14.39	13.65	1.65
13.54	8.79	6.56	22.97	12.99	14.21	15.01	14.23	1.70
13.15	8.45	6.30	21.26	11.84	14.23	15.41	14.61	1.75
12.64	8.17	6.21	18.72	11.26	13.72	15.60	14.80	1.80
12.04	7.96	6.08	16.63	10.64	12.48	15.64	14.83	1.85
11.77	7.79	5.90	15.82	10.31	12.25	15.55	14.75	1.90
11.57	7.71	5.66	15.13	10.27	12.18	15.40	14.62	1.95
11.39	7.91	5.79	14.30	10.35	11.56	15.30	14.52	2.00

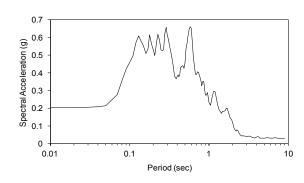
Il grafico seguente riporta lo <u>spettro medio VELOCITA'</u> riferito alle elaborazioni **SLV** dei 7 spettri elastici di accelerazione al 5% dello smorzamento critico di RSL i cui risultati di dettaglio sono riportati nella tabella.

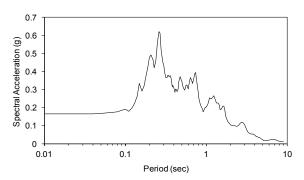
Period (sec)	Leonessa 1 Relative Velocity (cm/sec)	Leonessa 2 Relative Velocity (cm/sec)	Leonessa 3 Relative Velocity (cm/sec)	Leonessa 4 Relative Velocity (cm/sec)	Leonessa 5 Relative Velocity (cm/sec)	Leonessa 6 Relative Velocity (cm/sec)	Leonessa 7 Relative Velocity (cm/sec)	Spectral Relative Velocity Media Leonessa SLD
0.01	0.29	0.33	0.32	0.26	0.30	0.27	0.51	0.32
0.02	0.04	0.05	0.08	0.03	0.05	0.04	0.05	0.05
0.03	0.10	0.12	0.18	0.07	0.11	0.08	0.12	0.11
0.04	0.18	0.23	0.35	0.14	0.20	0.16	0.21	0.21
0.05	0.29	0.37	0.58	0.25	0.35	0.28	0.36	0.35
0.06	0.58	0.78	1.12	0.41	0.49	0.41	0.58	0.62
0.07	0.72	0.95	1.79	0.48	0.75	0.84	0.86	0.91
0.08	1.10	1.45	3.17	0.79	1.29	1.18	1.01	1.43
0.09	1.44	1.98	4.18	1.04	1.75	1.46	1.30	1.88
0.10	1.72	2.27	5.00	1.38	2.12	1.71	1.42	2.23
0.11	2.84	3.76	7.90	1.89	3.12	2.13	2.03	3.38

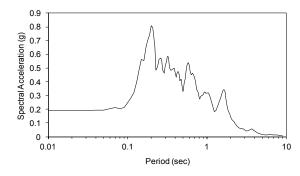
0.12	3.06	3.75	9.04	2.41	4.90	2.81	2.80	4.11
0.13	3.37	4.05	10.39	3.18	6.57	2.81	3.66	4.86
0.14	3.70	4.30	11.41	4.09	9.60	2.83	4.96	5.84
0.15	4.34	4.98	12.06	5.53	11.99	3.84	5.80	6.93
0.16	4.77	5.39	11.85	6.22	11.87	4.85	5.65	7.23
0.17	6.24	7.03	13.19	7.35	14.55	6.37	6.21	8.71
0.18	8.03	9.04	15.00	8.38	15.97	8.82	6.78	10.29
0.19	11.68	13.34	14.31	11.28	19.00	12.58	7.07	12.75
0.20	13.90	15.92	15.80	13.84	22.62	15.26	7.05	14.91
0.21	18.73	21.16	15.51	15.43	24.72	16.89	7.29	17.10
0.22	24.59	28.12	17.16	15.32	21.54	17.96	7.46	18.88
0.23	27.56	31.23	18.98	14.33	16.57	18.93	8.21	19.40
0.24	25.65	28.80	19.74	14.45	15.89	19.47	8.66	18.95
0.25	21.63	24.59	19.07	18.64	18.96	19.32	9.05	18.75
0.26	19.60	22.14	20.00	22.84	20.64	18.72	9.77	19.10
0.27	17.69	20.03	21.15	24.48	21.33	18.39	10.53	19.09
0.28	16.14	17.88	23.77	21.92	18.89	19.61	11.27	18.50
0.29	16.63	18.30	27.12	19.76	18.44	18.72	12.47	18.78
0.30	18.16	20.14	27.12	19.72	21.86	16.92	13.94	19.69
0.31	19.70	21.69	28.48	18.45	25.88	16.02	15.32	20.79
0.32	20.26	22.19	26.62	17.92	29.70	15.14	16.96	21.26
0.33	20.85	23.03	25.00	18.76	29.63	14.51	18.96	21.54
0.34	21.38	23.60	23.42	19.98	28.05	14.04	20.90	21.62
0.35	22.00	23.98	22.44	19.98	28.15	13.70	22.65	21.84
0.36	26.99	29.16	22.28	19.90	28.82	13.57	25.46	23.74
0.37	30.21	32.62	20.36	20.47	29.38	13.76	30.41	25.32
0.38	30.38	32.73	19.24	19.14	29.35	14.41	36.01	25.89
0.39	28.20	30.53	20.51	18.63	30.06	15.53	42.71	26.59
0.40	26.22	28.27	20.53	16.77	30.08	16.99	50.40	27.04
0.41	23.08	25.02	20.95	18.75	29.51	18.57	58.16	27.72
0.42	23.17	24.92	22.62	21.11	32.53	20.04	65.42	29.97
0.43	23.95	25.76	25.41	21.72	33.63	21.45	72.26	32.03
0.44	28.00	30.20	28.59	21.84	32.51	22.42	78.44	34.57
0.45	31.44	33.97	31.71	23.35	32.76	23.21	83.62	37.15
0.46	33.74	36.47	34.45	26.16	32.42	23.55	87.72	39.22
0.47	34.60	37.40	36.52	28.09	30.59	23.71	90.59	40.21
0.48	34.13	36.85	37.54	28.14	29.85	23.56	92.26	40.33
0.49	32.67	35.17	37.17	27.12	28.24	23.38	92.80	39.51
0.50	32.53	34.81	35.26	25.88	26.85	24.59	92.41	38.91
0.51	32.29	34.56	36.75	24.74	27.93	25.74	91.11	39.02
0.52	29.97	32.16	39.92	24.57	30.57	26.65	89.22	39.01
0.53	26.20	28.09	42.65	24.72	34.45	27.33	87.93	38.77
0.54	24.62	26.48	44.44	24.51	37.63	28.17	85.65	38.79
0.55	24.35	26.18	45.82	25.25	40.08	28.97	82.66	39.05
0.56	23.72	25.58	48.24	26.41	41.84	29.66	79.45	39.27

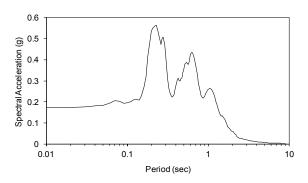


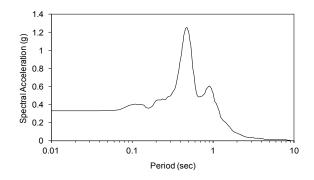

0.57	23.02	24.74	52.32	26.34	45.02	30.11	75.71	39.61
0.58	24.32	25.98	56.49	25.29	47.50	30.30	71.96	40.26
0.60	26.71	28.55	62.08	25.57	47.24	33.49	64.58	41.17
0.62	31.34	33.53	58.96	27.27	43.43	36.20	58.99	41.39
0.64	36.00	38.28	50.70	31.27	44.09	37.53	56.06	41.99
0.66	40.24	42.82	44.49	31.37	49.21	38.63	55.77	43.22
0.68	43.26	45.90	42.10	30.58	50.95	39.63	57.41	44.26
0.70	44.96	47.69	46.19	33.37	49.86	39.56	59.97	45.94
0.72	45.74	48.44	48.75	37.80	47.11	38.45	62.92	47.03
0.74	45.67	48.45	48.01	40.06	43.56	36.65	66.21	46.94
0.76	44.83	47.57	46.60	39.13	43.01	34.57	69.98	46.53
0.78	43.22	45.82	48.86	36.14	41.28	32.58	74.30	46.03
0.80	40.98	43.45	49.53	33.03	36.36	30.91	78.27	44.65
0.82	38.37	40.66	48.90	30.63	34.06	29.78	81.37	43.40
0.84	35.59	37.72	50.02	28.39	34.65	29.30	83.29	42.71
0.86	32.81	34.78	48.61	26.85	33.70	29.51	84.09	41.48
0.88	30.18	32.04	43.08	26.50	35.04	30.36	83.74	40.13
0.90	27.94	29.66	40.05	28.03	38.56	31.68	82.41	39.76
0.92	26.27	27.88	39.52	29.01	43.01	33.31	85.35	40.62
0.94	25.27	26.82	41.10	28.66	46.51	35.09	90.06	41.93
0.96	24.92	26.46	40.99	27.79	47.75	36.86	93.95	42.67
0.98	25.10	26.63	40.43	29.72	45.92	38.48	96.63	43.27
1.00	25.57	27.13	40.57	30.09	46.79	39.90	97.96	44.00
1.05	28.03	29.71	38.51	34.90	52.31	42.23	95.76	45.92
1.10	28.64	30.19	41.94	42.94	50.06	42.31	87.50	46.23
1.15	32.90	34.77	49.80	44.10	46.64	42.79	75.79	46.68
1.20	34.25	36.20	53.21	45.37	42.25	42.55	72.53	46.62
1.25	35.83	37.85	51.78	46.97	38.86	41.40	72.83	46.50
1.30	35.87	37.95	46.46	45.30	37.27	39.70	70.98	44.79
1.35	35.23	37.27	44.63	43.93	40.57	38.27	67.14	43.86
1.40	38.19	40.43	43.43	50.69	46.75	36.40	61.44	45.33
1.45	42.17	44.53	43.87	48.51	51.90	34.33	54.41	45.67
1.50	44.86	47.36	49.90	44.47	56.61	32.16	46.93	46.04
1.55	46.57	49.21	52.32	46.11	70.25	30.11	43.37	48.28
1.60	49.98	52.82	56.44	50.46	88.44	30.47	43.10	53.10
1.65	52.19	55.13	55.09	50.18	98.41	30.22	42.39	54.80
1.70	53.23	56.26	53.45	51.14	92.73	29.06	41.41	53.90
1.75	53.30	56.30	51.11	45.50	85.34	27.50	40.46	51.36
1.80	52.51	55.44	48.95	42.89	75.70	26.95	39.60	48.86
1.85	51.02	53.85	50.01	40.97	63.32	26.43	38.93	46.36
1.90	49.50	52.17	48.43	39.61	55.90	25.97	38.47	44.29
1.95	48.96	51.65	44.43	39.18	48.78	25.56	38.15	42.39
2.00	48.10	50.68	39.47	39.22	47.87	25.20	37.90	41.20






I risultati degli spettri di Accelerazione delle analisi per **SLD** con il modulo EERA sono riportati nei seguenti <u>7 spettri elastici di ACCELERAZIONE al 5%</u> dello smorzamento critico di RSL.





Dall'alto e da sinistra verso destra:

Spettri elastici di accelerazione di RSL

Leonessa_1; Leonessa_2;

Leonessa_3; Leonessa_4;

Leonessa_5; Leonessa_6;

Leonessa_7.

Stato limite SLD con Tr = 201 anni

Number of sublayer = 1 Type of sublayer = Outcrop

Ratio of critical Damping (%) = 5

Depth at top of sublayer (m) = 0

Maximum Spectral Acceleration (g) = 0.8345

Maximum Spectral Velocity (cm/s) = 53.3028

RISULTATO CALCOLO AMPLIFICAZIONE **LOCALE PER ACCELEROGRAMMA "1"**

Stato limite SLD

Number of sublayer = 1

Type of sublayer = Outcrop

Ratio of critical Damping (%) = 5

Depth at top of sublayer (m) = 0

Maximum Spectral Acceleration (g) = 0.9371

Maximum Spectral Velocity (cm/s) = 56.3041

RISULTATO CALCOLO AMPLIFICAZIONE **LOCALE PER ACCELEROGRAMMA "2"**

Stato limite SLD

Number of sublayer = 1

Type of sublayer = Outcrop

Ratio of critical Damping (%) = 5

Depth at top of sublayer (m) = 0

Maximum Spectral Acceleration (g) = 0.6620

Maximum Spectral Velocity (cm/s) = 62.0804

RISULTATO CALCOLO AMPLIFICAZIONE **LOCALE PER ACCELEROGRAMMA "3"**

Stato limite SLD

Number of sublayer = 1

Type of sublayer = Outcrop

Ratio of critical Damping (%) = 5

Depth at top of sublayer (m) = 0Maximum Spectral Acceleration (g) = 0.6202

Maximum Spectral Velocity (cm/s) = 59.3689

RISULTATO CALCOLO AMPLIFICAZIONE

LOCALE PER ACCELEROGRAMMA "4"

Stato limite SLD

Number of sublayer = 1

Type of sublayer = Outcrop

Ratio of critical Damping (%) = 5

Depth at top of sublayer (m) = 0Maximum Spectral Acceleration (g) = 0.8105

Maximum Spectral Velocity (cm/s) = 98.4077

RISULTATO CALCOLO AMPLIFICAZIONE LOCALE PER ACCELEROGRAMMA "5"

Stato limite SLD

Number of sublayer = 1

Type of sublayer = Outcrop

Ratio of critical Damping (%) = 5

Depth at top of sublayer (m) = 0

Maximum Spectral Acceleration (g) = 0.5642 Maximum Spectral Velocity (cm/s) = 42.7937 RISULTATO CALCOLO AMPLIFICAZIONE **LOCALE PER ACCELEROGRAMMA "6"**

Stato limite SLD

Number of sublayer = 1

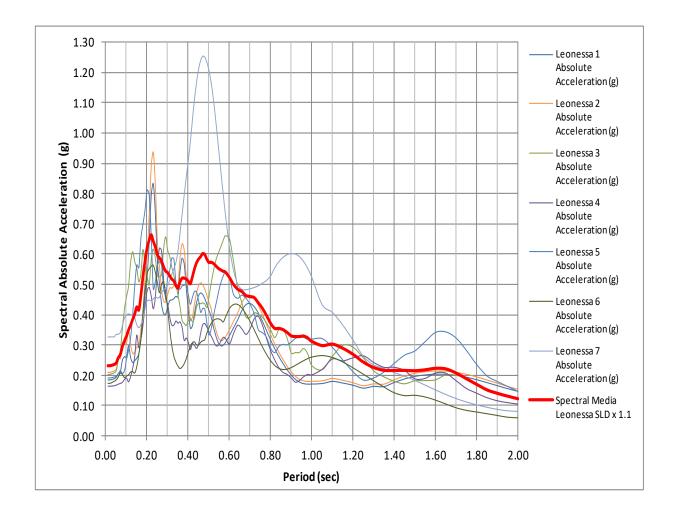
Type of sublayer = Outcrop

Ratio of critical Damping (%) = 5

Depth at top of sublayer (m) = 0

Maximum Spectral Acceleration (g) = 1.2549

Maximum Spectral Velocity (cm/s) = 97.9567


RISULTATO CALCOLO AMPLIFICAZIONE LOCALE PER ACCELEROGRAMMA "7"

Stato limite SLD

Dati di Accelerazione Locale in OUTPUT in EERA (Spectra) per ogni singolo accelerogramma in Input – Stato Limite SLD

Da questi 7 spettri elastici di accelerazione in RSL è stato calcolato lo **spettro elastico medio di accelerazione in RSL** per lo Stato Limite di Salvaguardia della Vita "SLD" che viene rappresentato nel grafico seguente incrementato cautelativamente del 10% in virtù della sismicità locale e dei risultati degli studi di MS3.

Spettri di risposta di RSL in riferimento agli accelerogrammi naturali Rexelilte e

spettro elastico medio di RSL su stratigrafia sismica S_{DH} - DH – MASW - HVSR

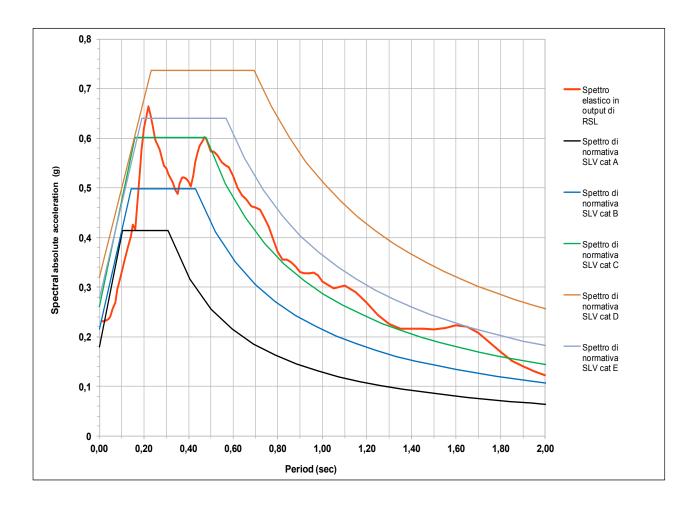
per Edificio Scolastico di Leonessa - Classe IV - T1

Stato Limite di Salvaguardia di Danno (SLD) – Tr = 201 anni

Di seguito, in riferimento alla figura precedente, si riporta la tabella dei valori dei sette spettri di amplificazione e dello spettro elastico medio di RSL - Stato Limite SLD - Tr = 201 anni per il periodo compreso nell'intervallo tra 0.01 sec e 2.0 sec

Period (sec)	Leonessa 1 Absolute Acceleration (g)	Leonessa 2 Absolute Acceleration (g)	Leonessa 3 Absolute Acceleration (g)	Leonessa 4 Absolute Acceleration (g)	Leonessa 5 Absolute Acceleration (g)	Leonessa 6 Absolute Acceleration (g)	Leonessa 7 Absolute Acceleration (g)	Spectral Media Leonessa SLD
0.01	0.18	0.21	0.20	0.16	0.19	0.17	0.33	0,23
0.02	0.18	0.21	0.20	0.16	0.19	0.17	0.33	0,23
0.03	0.19	0.21	0.20	0.16	0.19	0.18	0.33	0,23
0.04	0.19	0.21	0.21	0.17	0.19	0.18	0.33	0,24
0.05	0.19	0.22	0.21	0.17	0.20	0.18	0.34	0,24
0.06	0.20	0.26	0.25	0.17	0.20	0.19	0.34	0,26
0.07	0.21	0.26	0.28	0.17	0.21	0.21	0.34	0,27
0.08	0.25	0.31	0.35	0.18	0.20	0.20	0.36	0,29
0.09	0.26	0.31	0.42	0.19	0.21	0.19	0.39	0,31
0.10	0.26	0.30	0.46	0.19	0.25	0.20	0.40	0,33
0.11	0.30	0.35	0.50	0.18	0.28	0.20	0.40	0,35
0.12	0.26	0.30	0.57	0.20	0.32	0.21	0.40	0,37
0.13	0.24	0.27	0.61	0.22	0.40	0.21	0.40	0,38
0.14	0.25	0.28	0.58	0.26	0.49	0.21	0.39	0,40
0.15	0.26	0.29	0.55	0.33	0.56	0.23	0.37	0,43
0.16	0.27	0.30	0.51	0.29	0.55	0.27	0.36	0,42
0.17	0.32	0.35	0.53	0.32	0.65	0.32	0.37	0,46
0.18	0.37	0.41	0.62	0.37	0.70	0.41	0.38	0,53
0.19	0.46	0.52	0.56	0.42	0.74	0.48	0.42	0,58
0.20	0.52	0.59	0.53	0.48	0.81	0.54	0.45	0,62
0.21	0.64	0.73	0.50	0.49	0.80	0.55	0.45	0,65
0.22	0.79	0.89	0.58	0.46	0.66	0.56	0.45	0,66
0.23	0.83	0.94	0.62	0.42	0.48	0.56	0.45	0,64
0.24	0.74	0.83	0.59	0.46	0.51	0.54	0.46	0,62
0.25	0.58	0.64	0.53	0.56	0.56	0.51	0.46	0,60
0.26	0.50	0.56	0.53	0.62	0.57	0.47	0.46	0,59
0.27	0.44	0.48	0.53	0.61	0.56	0.50	0.47	0,58
0.28	0.40	0.45	0.62	0.52	0.49	0.51	0.48	0,56
0.29	0.40	0.44	0.66	0.45	0.46	0.47	0.49	0,54
0.30	0.43	0.47	0.61	0.44	0.52	0.42	0.50	0,54

0.31	0.45	0.49	0.59	0.39	0.54	0.35	0.52	0,53
0.32	0.45	0.49	0.56	0.37	0.59	0.30	0.54	0,52
0.33	0.45	0.50	0.53	0.37	0.58	0.26	0.55	0,51
0.34	0.46	0.50	0.50	0.38	0.51	0.24	0.57	0,50
0.35	0.46	0.50	0.47	0.37	0.48	0.23	0.61	0,49
0.36	0.54	0.59	0.43	0.38	0.48	0.22	0.67	0,51
0.37	0.59	0.63	0.38	0.36	0.49	0.23	0.73	0,52
0.38	0.57	0.61	0.37	0.32	0.50	0.24	0.79	0,52
0.39	0.49	0.53	0.36	0.32	0.50	0.25	0.85	0,52
0.40	0.42	0.45	0.38	0.31	0.47	0.28	0.91	0,51
0.41	0.36	0.38	0.39	0.29	0.43	0.30	0.97	0,50
0.42	0.36	0.39	0.38	0.30	0.46	0.31	1.04	0,53
0.43	0.40	0.44	0.39	0.30	0.48	0.31	1.11	0,55
0.44	0.44	0.47	0.42	0.29	0.47	0.30	1.17	0,57
0.45	0.46	0.50	0.44	0.30	0.45	0.30	1.21	0,58
0.46	0.47	0.51	0.44	0.34	0.41	0.31	1.24	0,59
0.47	0.47	0.50	0.44	0.37	0.42	0.31	1.25	0,60
0.48	0.45	0.48	0.44	0.37	0.42	0.32	1.25	0,60
0.49	0.44	0.46	0.42	0.36	0.37	0.34	1.24	0,58
0.50	0.42	0.44	0.46	0.34	0.33	0.36	1.21	0,57
0.51	0.40	0.42	0.50	0.33	0.35	0.37	1.17	0,57
0.52	0.37	0.39	0.54	0.32	0.39	0.38	1.12	0,57
0.53	0.34	0.36	0.57	0.30	0.42	0.38	1.06	0,56
0.54	0.32	0.34	0.59	0.30	0.45	0.39	1.00	0,56
0.55	0.30	0.32	0.61	0.30	0.48	0.39	0.93	0,55
0.56	0.30	0.31	0.63	0.32	0.51	0.38	0.86	0,55
0.57	0.30	0.32	0.65	0.33	0.53	0.38	0.80	0,54
0.58	0.31	0.33	0.66	0.32	0.54	0.39	0.73	0,54
0.60	0.33	0.35	0.65	0.30	0.52	0.42	0.62	0,52
0.62	0.36	0.38	0.57	0.34	0.46	0.43	0.55	0,50
0.64	0.38	0.41	0.49	0.37	0.45	0.43	0.50	0,48
0.66	0.41	0.44	0.44	0.35	0.46	0.42	0.48	0,48
0.68	0.43	0.46	0.39	0.34	0.45	0.40	0.48	0,46
0.70	0.44	0.46	0.39	0.35	0.43	0.38	0.49	0,46
0.72	0.43	0.45	0.41	0.39	0.40	0.35	0.49	0,46
0.74	0.41	0.43	0.40	0.39	0.35	0.32	0.50	0,44
0.76	0.38	0.40	0.39	0.37	0.34	0.29	0.50	0,42
0.78	0.35	0.37	0.37	0.32	0.32	0.27	0.51	0,40
0.80	0.32	0.33	0.35	0.28	0.29	0.25	0.53	0,37
0.82	0.29	0.30	0.32	0.25	0.27	0.23	0.56	0,35
0.84	0.26	0.28	0.35	0.22	0.29	0.22	0.58	0,35
0.86	0.24	0.25	0.35	0.21	0.30	0.22	0.59	0,35
0.88	0.22	0.23	0.32	0.20	0.30	0.22	0.60	0,34
0.90	0.20	0.21	0.27	0.19	0.31	0.23	0.60	0,33
0.92	0.19	0.20	0.27	0.18	0.32	0.23	0.60	0,33
						·		-,



0.94	0.18	0.19	0.28	0.18	0.33	0.24	0.59	0,33
0.96	0.17	0.18	0.29	0.20	0.32	0.25	0.58	0,33
0.98	0.17	0.18	0.27	0.20	0.32	0.25	0.55	0,32
1.00	0.17	0.18	0.23	0.20	0.32	0.26	0.52	0,31
1.05	0.17	0.18	0.22	0.22	0.32	0.26	0.43	0,30
1.10	0.18	0.19	0.26	0.25	0.29	0.26	0.41	0,30
1.15	0.17	0.18	0.30	0.25	0.25	0.24	0.37	0,29
1.20	0.17	0.18	0.29	0.26	0.21	0.22	0.32	0,27
1.25	0.16	0.17	0.26	0.26	0.18	0.20	0.26	0,24
1.30	0.16	0.17	0.21	0.24	0.19	0.18	0.24	0,23
1.35	0.16	0.17	0.19	0.23	0.21	0.16	0.22	0,22
1.40	0.18	0.19	0.18	0.23	0.24	0.14	0.21	0,22
1.45	0.19	0.20	0.17	0.22	0.26	0.13	0.20	0,22
1.50	0.20	0.21	0.18	0.19	0.28	0.13	0.18	0,21
1.55	0.20	0.21	0.18	0.19	0.31	0.13	0.17	0,22
1.60	0.20	0.21	0.18	0.21	0.34	0.12	0.15	0,22
1.65	0.20	0.21	0.20	0.21	0.34	0.10	0.14	0,22
1.70	0.20	0.21	0.20	0.18	0.32	0.09	0.12	0,21
1.75	0.19	0.20	0.19	0.16	0.28	0.08	0.11	0,19
1.80	0.18	0.19	0.17	0.14	0.23	0.08	0.10	0,17
1.85	0.18	0.18	0.15	0.13	0.20	0.07	0.09	0,15
1.90	0.17	0.17	0.14	0.12	0.18	0.07	0.09	0,14
1.95	0.16	0.16	0.13	0.11	0.16	0.06	0.08	0,13
2.00	0.15	0.15	0.12	0.10	0.15	0.06	0.08	0.12

Il grafico seguente riporta, a puro titolo indicativo, il <u>confronto tra lo spettro</u> <u>elastico medio di RSL e gli spettri di normativa NTC 2018</u> inerenti le diverse categorie di sottosuolo per SLD.

Confronto, a puro titolo indicativo, tra lo spettro elastico medio di RSL per SLD e gli spettri di NTC 2018 inerenti le diverse Categorie di Sottosuolo di Fondazione Edificio Scolastico di Leonessa - Classe IV – Categoria topografia T1 Stato Limite di Salvaguardia di Danno (SLD) – Tr = 201 anni

In riferimento al grafico precedente, si riportato i punti degli spettri di risposta di NTC 2018 per SLD inerenti le diverse Categorie di Sottosuolo di Fondazione ricavati con il foglio di calcolo Spettri-NTC ver. 1.0.3. rilasciato dal Consiglio Superiore LL.PP. per lo Stato Limite SLD – Vita nominale Vn=100 anni – Coefficiente d'Uso Cu=2 e Vita di Riferimento Vr=200 anni – Categoria topografica T1 (St = 1.00). Le righe con fondo grigio rappresentano, dall'alto, TB, TC e TD

Ts	Se (g)								
0.000	0.180	0.000	0.216	0.000	0.261	0.000	0.320	0.000	0.278
0.103	0.415	0.143	0.498	0.159	0.602	0.232	0.737	0.189	0.640
0.309	0.415	0.430	0.498	0.478	0.602	0.695	0.737	0.568	0.640
0.405	0.317	0.520	0.411	0.566	0.508	0.772	0.663	0.652	0.558
0.500	0.256	0.610	0.351	0.653	0.440	0.850	0.603	0.735	0.495
0.596	0.215	0.700	0.306	0.741	0.388	0.927	0.553	0.819	0.444
0.692	0.185	0.790	0.271	0.829	0.347	1.004	0.510	0.902	0.403
0.788	0.163	0.880	0.243	0.916	0.314	1.082	0.474	0.985	0.369
0.883	0.145	0.970	0.221	1.004	0.286	1.159	0.442	1.069	0.340
0.979	0.131	1.060	0.202	1.092	0.263	1.236	0.414	1.152	0.316
1.075	0.119	1.150	0.186	1.180	0.244	1.314	0.390	1.236	0.294
1.171	0.109	1.240	0.173	1.267	0.227	1.391	0.368	1.319	0.276
1.266	0.101	1.330	0.161	1.355	0.212	1.469	0.349	1.402	0.259
1.362	0.094	1.420	0.151	1.443	0.199	1.546	0.331	1.486	0.245
1.458	0.088	1.510	0.142	1.530	0.188	1.623	0.316	1.569	0.232
1.554	0.082	1.600	0.134	1.618	0.178	1.701	0.301	1.652	0.220
1.649	0.078	1.690	0.127	1.706	0.169	1.778	0.288	1.736	0.210
1.745	0.073	1.780	0.120	1.793	0.160	1.855	0.276	1.819	0.200
1.841	0.070	1.870	0.114	1.881	0.153	1.933	0.265	1.903	0.191
1.937	0.066	1.960	0.109	1.969	0.146	2.010	0.255	1.986	0.183
2.032	0.063	2.050	0.104	2.057	0.140	2.087	0.245	2.069	0.176
2.128	0.060	2.140	0.100	2.144	0.134	2.165	0.237	2.153	0.169
2.224	0.058	2.230	0.096	2.232	0.129	2.242	0.228	2.236	0.163
2.320	0.055	2.320	0.092	2.320	0.124	2.320	0.221	2.320	0.157
2.400	0.052	2.400	0.086	2.400	0.116	2.400	0.206	2.400	0.147

RELAZIONE GEOLOGICA - Dott. Geol. FRANCESCO CHIARETTI

В

 \mathbf{A}

 \mathbf{E}

PERICOLOSITA' GEOLOGICA

Riassumendo quanto segue per il sito di intervento in base alle indagini eseguite:

- terreno pianeggiante e lontano da cigli di scarpate;
- area priva di fenomeni di dissesto;
- area priva di problematiche idrauliche;
- coefficiente topografico pari a St=1,0;
- assenza di contatti stratigrafici fra terreni significativamente diversi in fondazione;
- non evidenza di fagliazione in superficie;
- area non interessata da faglie attive e capaci;
- assenza di cavità e di sacche di gas;
- assenza di falda acquifera per profondità di almeno 30 metri (sondaggi);
- terreni granulometricamente e per assenza di falda non soggetti a liquefazione;
- assenza di livelli e banchi di materiali di riporto in fondazione;
- assenza di terreni fortemente degradati e/o molli e cedevoli dal piano fondale;
- esclusione di fenomeni di alluvionamento;
- esclusione di fenomeni di impaludamento;
- area non rientrante nelle zone perimetrate a rischio idrogeologico e idraulico nel PAI dell'ABT ai sensi del DL 180/98:
- area simicamente amplificabile;

si può ritenere che la pericolosità geologica del sito sia da considerare di attenzione a livello amplificativo sismico e di variabilità geotecnica in relazione al carattere strategico che riveste l'edificio scolastico anche nelle funzioni di protezione civile essendo anche sede di COC, nonché rientrando lo stesso tra le "Costruzioni con livelli di prestazioni elevati" di cui alle NTC 2018 Paragrafo 2.4.1.- Tab. 2.4.I.

L'elemento da segnalare e da tenere in debito conto nella progettazione geotecnica, infatti, è dato dalla variabilità laterale e verticale dello spessore dei terreni di riporto sui depositi naturali argilloso-ghiaiosi.

Una tale situazione comporta che la fondazione superficiale dovrà comunque risultare impostata per intero almeno nel banco 2 del Modello Geologico-geotecnico del terreno.

Resta inteso, dunque, che il superamento di tale profondità con il piano di appoggio fondale, dovrà essere sempre verificato in fase operativa di scavo visto che le indagini sono puntuali e l'intervento presenta una certa estensione.

A livello idraulico, visto che il sito risulta interessato da abbondanti acque di precipitazioni atmosferiche, vista la presenza di terreni superficiali a bassa permeabilità, è assolutamente necessaria la realizzazione di adeguate strutture drenanti che dovranno garantire lo smaltimento delle acque superficiali avendo cura di incanalarle e smaltirle in modo da tenere asciutto il sito e di non andare ad intaccare le linee naturali di deflusso per non ingenerare fenomeni di dissesto idrogeologico.

A livello sismico, va attentamente valutata l'amplificazione locale in riferimento alle vigenti normative nazionali e regionali e alle Ordinanze del Commissario al Sisma in materia.

VALORI CARATTERISTICI DEI PARAMETRI GEOTECNICI

Per *valore caratteristico* di un parametro geotecnico deve intendersi un stima ragionata e cautelativa del valore del parametro nello stato limite considerato. Dalla nuova Circolare 2019, si riporta quanto indicato al Par. C6.2.2.4.

La scelta dei valori caratteristici dei parametri geotecnici avviene in due fasi.

La prima fase comporta l'identificazione dei parametri geotecnici appropriati ai fini progettuali. Tale scelta richiede una valutazione specifica da parte del progettista, per il necessario riferimento alle diverse verifiche da effettuare (ad esempio, ai diversi tipi di meccanismi di collasso del terreno nel caso di verifiche SLU).

Identificati i parametri geotecnici appropriati, la seconda fase del processo decisionale riguarda la valutazione dei valori caratteristici degli stessi parametri.

Nelle valutazioni che il progettista deve svolgere per pervenire ad una scelta corretta dei valori caratteristici, appare giustificato il riferimento a <u>valori prossimi ai valori medi</u> quando nello stato limite considerato è coinvolto un elevato volume di terreno, con possibile compensazione delle eterogeneità o quando la struttura a contatto con il terreno è dotata di rigidezza sufficiente a trasferire le azioni dalle zone meno resistenti a quelle più resistenti.

Al contrario, <u>valori caratteristici prossimi ai valori minimi</u> dei parametri geotecnici appaiono più giustificati nel caso in cui siano coinvolti modesti volumi di terreno, con concentrazione delle deformazioni fino alla formazione di superfici di rottura nelle porzioni di terreno meno resistenti del volume significativo, o nel caso in cui la struttura a contatto con il terreno non sia in grado di trasferire forze dalle zone meno resistenti a quelle più resistenti a causa della sua insufficiente rigidezza.

La scelta di valori caratteristici prossimi ai valori minimi dei parametri geotecnici può essere dettata anche solo dalle caratteristiche dei terreni; basti pensare, ad esempio, all'effetto delle discontinuità sul valore operativo della resistenza non drenata.

Una migliore approssimazione nella valutazione dei valori caratteristici può essere ottenuta operando le opportune medie dei valori dei parametri geotecnici nell'ambito di piccoli volumi di terreno, quando questi assumano importanza per lo stato limite considerato. È questo il caso, ad esempio, delle verifiche SLU dei pali in condizioni non drenate, in termini di tensioni totali, nelle quali per la determinazione del contributo di resistenza alla punta è appropriata la valutazione del valore caratteristico della resistenza non drenata mediante una media locale effettuata nel volume di terreno interessato dal meccanismo di collasso indotto dalla punta stessa.

INDICAZIONI OPERE DI FONDAZIONE SUPERFICIALE

Come già chiaramente specificato dalle NTC 2008 al Cap. 2.7 "Relativamente ai metodi di calcolo, è d'obbligo il Metodo agli stati limite", la cosiddetta Verifica alla Tensione Ammissibile della vecchia normativa 1996 non è più applicabile.

Come indicato al Par. 6.4.1 delle NTC 2018, le scelte progettuali per le opere di fondazione devono essere effettuate contestualmente e congruentemente con quelle delle strutture in elevazione. Nel caso di opere situate su pendii o in prossimità di pendii naturali o artificiali deve essere verificata anche la stabilità globale del pendio in assenza e in presenza dell'opera e di eventuali scavi, riporti o interventi di altra natura, necessari alla sua realizzazione. Devono essere valutati gli effetti della costruzione dell'opera su manufatti attigui e sull'ambiente circostante.

Come indicato al Par. 6.4.2 delle NTC 2018, la profondità del piano di posa della fondazione deve essere scelta e giustificata in relazione alle caratteristiche e alle prestazioni della struttura in elevazione, alle caratteristiche del sottosuolo e alle condizioni ambientali. Il piano di fondazione deve essere situato sotto la coltre di terreno vegetale nonché sotto lo strato interessato dal gelo e da significative variazioni stagionali del contenuto d'acqua.

Nel caso in esame, rientrando il sito nella Categoria topografica T1, non va verificata la stabilità globale del pendio.

Nel caso in esame, il piano di fondazione deve risultare ubicato almeno al di sotto del banco 1 (del Modello Geologico-Geotecnico naturale di zona) indicato fino alla profondità di 1,00 metro dal piano di campagna, ma potenzialmente di spessori maggiori, essendo le indagini puntuali.

Nel caso in esame, non si rilevano situazioni che possano dare origine a fenomeni di erosione o di scalzamento da parte di acque di scorrimento superficiale, anche se è comunque necessario un adeguato sistema di smaltimento idrico controllato.

VERIFICHE AGLI STATI LIMITE ULTIMI (SLU) - PAR. 6.4.2.1 E 6.2.3 NTC

Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine.

Gli stati limite ultimi delle fondazioni superficiali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa.

Le verifiche devono essere effettuate almeno nei confronti dei seguenti stati limite:

- SLU di tipo geotecnico (GEO)
 - collasso per carico limite dell'insieme fondazione-terreno
 - collasso per scorrimento sul piano di posa
 - stabilità globale
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza negli elementi strutturali,

accertando che la condizione Ed ≤ Rd sia soddisfatta per ogni stato limite considerato; dove Ed è il valore di progetto dell'azione o dell'effetto dell'azione

$$E_{d} = E \left[\gamma_{F} F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right] \qquad \qquad E_{d} = \gamma_{E} \cdot E \left[F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right],$$

e dove Rd è il valore di progetto della resistenza del sistema geotecnico:

$$R_{d} = \frac{1}{\gamma_{R}} R \left[\gamma_{F} F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right].$$

Effetto delle azioni e resistenza sono espresse in funzione delle azioni di progetto γ_FF_K, dei parametri di progetto Xk/γ_M e della geometria di progetto a_d. L'effetto delle azioni può anche essere valutato direttamente come Ed=Ek·γE. Nella formulazione della resistenza $\,$ Rd, compare esplicitamente un coefficiente $\,$ $\gamma_{R} \,$ che opera direttamente sulla resistenza del sistema.

La verifica della suddetta condizione deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3).

I diversi gruppi di coefficienti di sicurezza parziali sono scelti nell'ambito di due approcci progettuali distinti e alternativi.

Nel primo approccio progettuale (Approccio 1) sono previste due diverse combinazioni di gruppi di coefficienti: la prima combinazione è generalmente più severa nei confronti del dimensionamento strutturale delle opere a contatto con il terreno, mentre la seconda combinazione è generalmente più severa nei riguardi del dimensionamento geotecnico.

Nel secondo approccio progettuale (Approccio 2) è prevista un'unica combinazione di gruppi di coefficienti, da adottare sia nelle verifiche strutturali sia nelle verifiche geotecniche.

La verifica di stabilità globale allo SLU di tipo geotecnico (GEO) deve essere effettuata secondo

Approccio 1:

- Combinazione 2: (A2+M2+R2)

tenendo conto dei coefficienti parziali (parametri di riduzione) riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici e nella Tabella 6.8.I per le resistenze globali.

Le rimanenti verifiche devono essere effettuate, applicando

Approccio 2:

(A1+M1+R3)

tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.I e 6.4.I.

Nelle verifiche effettuate con l'approccio 2 che siano finalizzate al dimensionamento strutturale, il coefficiente γ_R non deve essere portato in conto.

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni								
	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)			
Carichi permanenti G ₁	Favorevole	γ_{G1}	0,9	1,0	1,0			
	Sfavorevole		1,1	1,3	1,0			
Carichi permanenti G ₂ (1)	Favorevole	γ_{G2}	0,8	0,8	0,8			
	Sfavorevole		1,5	1,5	1,3			
Azioni variabili Q	Favorevole	Υ _{Qi}	0,0	0,0	0,0			
	Sfavorevole		1,5	1,5	1,3			

Dove è:

- **EQU**: stato limite di equilibrio che considera la struttura, il terreno o l'insieme terrenostruttura come corpi rigidi. Questo stato limite è da prendersi a riferimento, ad esempio, per le verifiche del ribaltamento dei muri di sostegno.
- **STR:** stato limite di resistenza della struttura che riguarda anche gli elementi di fondazione e di sostegno del terreno, è da prendersi a riferimento per tutti i dimensionamenti strutturali. Nei casi in cui le azioni sulle strutture siano esercitate dal terreno, si deve far riferimento ai valori caratteristici dei parametri geotecnici.
- **GEO**: stato limite di resistenza del terreno che deve essere preso a riferimento per il dimensionamento geotecnico delle opere di fondazione e di sostegno e, più in generale, delle strutture che interagiscono direttamente con il terreno, oltre che per le verifiche di stabilità globale dell'insieme terreno-struttura.
- γ_{G1} coefficiente parziale del peso proprio della struttura, nonché del peso proprio del terreno e dell'acqua, quando pertinenti;
- γ_{G2} coefficiente parziale dei pesi propri degli elementi non strutturali;
- γ_{Qi} coefficiente parziale delle azioni variabili.

Il terreno e l'acqua costituiscono carichi permanenti (strutturali) quando, nella modellazione utilizzata, contribuiscono al comportamento dell'opera con le loro caratteristiche di peso, resistenza e rigidezza (*Par. 6.2.3.1.1 Azioni delle NTC*).

- a) <u>CARICHI (Azioni) Permanenti (G)</u>: azioni che agiscono durante tutta la vita nominale della costruzione, la cui variazione di intensità nel tempo è così piccola e lenta da poterle considerare con sufficiente approssimazione costanti nel tempo:
 - peso proprio di tutti gli elementi strutturali; peso proprio del terreno, quando pertinente; forze indotte dal terreno (esclusi gli effetti di carichi variabili applicati al terreno); forze risultanti dalla pressione dell'acqua (quando si configurino costanti nel tempo) (G₁);

- peso proprio di tutti gli elementi non strutturali (G₂);
- spostamenti e deformazioni imposti, previsti dal progetto e realizzati all'atto della costruzione;
- pretensione e precompressione (P);
- ritiro e viscosità;
- spostamenti differenziali;
- b) CARICHI (Azioni) variabili (Q): azioni sulla struttura o sull'elemento strutturale con valori istantanei che possono risultare sensibilmente diversi fra loro nel tempo:
 - di lunga durata: agiscono con un'intensità significativa, continuativamente, per un tempo non trascurabile rispetto alla vita nominale della struttura;
 - di breve durata: azioni che agiscono per un periodo di tempo breve rispetto alla vita nominale della struttura.

Di seguito si riportano le diverse Tabelle di NTC 2018 citate nel testo per i Coefficienti parziali del terreno, per i coefficienti parziali di fondazioni superficiali e per le verifiche di sicurezza dei pendii.

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno						
Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M	(M1)	(M2)		
Tangente dell'angolo di resi- stenza al taglio	$\tan {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25		
Coesione efficace	c′ _k	γε	1,0	1,25		
Resistenza non drenata	c_{uk}	γ_{ca}	1,0	1,4		
Peso dell'unità di volume	γ_{γ}	γ_{ν}	1,0	1,0		

Tab. 6.4.I – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1.1$

Tab. 6.8.I - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo

COEFFICIENTE	R2
γ_{R}	1,1

DISCUSSIONE DEI RISULTATI E CONCLUSIONI GEOLOGICO-TECNICHE

Su incarico del Comune di Leonessa, lo scrivente ha eseguito lo studio geologico-tecnico-sismico di dettaglio del plesso scolastico dove ricade la Scuola dell'Infanzia (Materna) del Comune di Leonessa, in Via Aldo Moro del Capoluogo di Leonessa, foglio 95, particella 271, il cui edificio è destinato agli interventi di adeguamento sismico di cui al titolo.

Lavoro svolto in attuazione del Decreto del MIUR 20 luglio 2017 n. 511; Determinazione Area Difesa Suolo Regione Lazio n. G14602 del 26-10-2017; Decreto del MIUR 29 dicembre 2017 in GU n. 115 Serie generale del 10-5-2018 Individuazione degli interventi di adeguamento antisismico degli edifici scolastici da finanziare con le risorse relative alle annualità 2016-2017 - Fondo protezione civile. (Prot. n. 1048).

La presente relazione illustra l'assetto geomorfologico ed idrogeologico e la situazione litostratigrafica, geotecnica e sismica locale, desunte da un rilevamento geologico e geomorfologico generale e di dettaglio di un'area sufficientemente estesa, da 4 Sondaggi geognostici a rotazione e carotaggio continuo con SPT (Standard Penetration Test) in fori di sondaggio eseguiti dalla Sondedile srl di Rieti, Società Concessionata e Certificata dal Ministero Infrastrutture e Trasporti, da 4 sondaggi sulla base delle murature/fondazione per accertare la profondità di importa delle stesse e da indagini geofisiche sismiche con 2 Down-Hole in fori di sondaggio preventivamente attrezzati, 5 sondaggi verticali delle onde S mediante analisi delle onde di superficie M.A.S.W., 2 stese di Sismica a Rifrazione e 4 misure di Rumore sismico a stazione singola. Tali prospezioni sono state eseguite sia in fase attuale, sia in fasi pregresse e riutilizzate.

Il presente lavoro, essendo il comune di Leonessa classificato nella Zona Sismica 1 della Nuova Classificazione Sismica Regionale dettata dalla *DGR n. 387 del 22 maggio 2009* (pubblicata sul BUR Lazio n. 24 del 27.06.2009 - Supplemento Ordinario n. 106) in applicazione dell'Ordinanza del Presidente del Consiglio dei Ministri n. 3519 del 28 Aprile 2006 e della DGR Lazio 766/03, è stato redatto nel rispetto dei seguenti riferimenti normativi:

- <u>D.M. Infrastrutture e Trasporti del 17.01.2018</u> "Aggiornamento delle Norme Tecniche per le Costruzioni" (S.O. Gazzetta Ufficiale n. 42 del 20/02/2018).
- <u>Circolare 21.01.2019 n. 7</u> "Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto mini-steriale 17 gennaio 2018. (S.O. Gazzetta Ufficiale n. 5 del 11/02/2019).
- Regolamento Regionale 13 luglio 2016, n. 14 Snellimento e semplificazione delle procedure per l'esercizio delle funzioni regionali in materia di prevenzione del rischio sismico e di repressione delle violazioni della normativa sismica (BUR Lazio n. 56 del 14/07/2016).
- DGR Lazio n. 489 del 17 ottobre 2012 Modifica dell'allegato 2 della DGR Lazio n. 387 del 22 maggio 2009.

I <u>riferimenti generali topografici e sismici</u> del sito sono i seguenti.

- o Coordinate *ED50*: **Longitudine 12,964367**° E **Latitudine 42,568052**° N
- o Vs,eq,30 da DH e MASW

```
\begin{split} VS_{eq} &= 556 \text{ m/sec} \pm 56 \text{ m/sec} \text{ (MASW 1),} \\ VS_{eq} &= 431 \text{ m/sec} \pm 43 \text{ m/sec} \text{ (MASW 2),} \\ VS_{eq} &= 379 \text{ m/sec} \pm 38 \text{ m/sec} \text{ (MASW 3),} \\ VS_{eq} &= 452 \text{ m/sec} \pm 45 \text{ m/sec} \text{ (MASW 4),} \\ VS_{eq} &= 489 \text{ m/sec} \pm 49 \text{ m/sec} \text{ (MASW 5),} \\ VS_{eq} &= 608 \text{ m/sec} \text{ (DH 1),} \\ VS_{eq} &= 549 \text{ m/sec} \text{ (DH 2).} \end{split}
```

Substrato Sismico H (Vs > 800 m/sec) intercettato rispettivamente alle profondità di:

```
H = 16 metri (Masw 1)
H = 10 metri (Masw 2)
H = 10 metri (Masw 3)
H = 13 metri (Masw 4)
H = 12 metri (Masw 5)
H = 19 metri (DH 1)
H = 14 metri (DH 2)
```


- o Categoria di sottosuolo di fondazione: "B"
- o <u>Categoria topografica</u>: **T 1.**
- \circ Coefficiente di amplificazione topografica: $S_T = 1,0$.
- o Falda idrica: NON presente.

A livello geomorfologico, il plesso scolastico si trova nel capoluogo di Leonessa, immediatamente a nord del centro storico, lungo Viale Aldo Moro. Specificatamente, il fabbricato è distinto catastalmente nella particella n. 271 del foglio n. 95, ad una quota media di 962 metri s.l.m. (CTR), in una zona già abbondantemente edificata con fabbricati di civile abitazione, capannoni e strutture pubbliche.

Il sito si presenta pianeggiante, proprio in relazione alla natura detriticoalluvionale dei suoli. Una situazione questa che determina la stabilità geomorfologica di tutta la zona, nella quale non sono stati rilevati fenomeni riferibili a processi franosi né in atto, né potenziali, né aree degradate o ad erosione diffusa.

Nell'area indagata circostante il lotto in esame, inoltre, non sono state rilevate cavità naturali o artificiali, né liquefazioni dei suoli che possano compromettere la stabilità dei futuri fabbricati e si possono escludere fenomeni alluvionali. Tutti i fabbricati esistenti nei dintorni, inoltre, presentano adeguati comportamenti statici. Non ci sono elementi idrogeomorfologici da segnalare.

Il sito non rientra nelle aree soggette a rischio gravitativo perimetrate ai sensi del D.L. 180/1998 nel PAI dell'ABTevere.

A livello idrogeologico locale, dalle indagini geologiche effettuate fino alla profondità di 30 metri, è emerso che i terreni in questione non vengono interessati da falde acquifere le quali, se esistono, si trovano a profondità elevate e quindi di non influenza rispetto al piano fondale. Nella zona non esistono sorgenti e non si ha notizia di pozzi di captazione.

A livello idrogeologico regionale, il substrato fa parte del "Complesso dei conglomerati" costituito da depositi ciottolosi eterogenei con sabbie, limi e argille subordinate. Assorbono generalmente una grande quantità di acqua meteorica e possono contenere piccole falde discontinue di interesse locale, non trovate, comunque, con le perforazioni eseguite.

A livello idraulico locale, interessato da imbibizione superficiale in caso di piogge è il terreno superficiale. Molta attenzione, quindi, dovrà essere posta allo smaltimento delle acque superficiali avendo cura di incanalarle in adeguate strutture drenanti in modo da non andare ad intaccare le linee naturali di deflusso per non ingenerare fenomeni di dissesto idrogeologico.

Ogni riporto, infine, dovrà essere realizzato con materiali brecciosi inerti, scevri da sostanze organiche, classificabili CNR UNI 10060 come Al, A3, A2-4 e A2-5, con alto angolo di attrito interno (almeno 35°), buon peso di volume (almeno 19.5 kN/mc) e con ottime capacità drenanti.

A livello idrografico di superficie, il sito fa parte del bacino imbrifero del Fosso Tascino di Leonessa che rappresenta la parte alta del Fiume Corno, a sua volta affluente in sinistra orografica del Fiume Nera. A livello regionale, in definitiva, appartiene al bacino imbrifero del Fiume Tevere.

Il sito specifico non risulta inserito nelle aree perimetrate a rischio idraulico ai sensi del D.L. 180/1998 nel PAI dell'ABT.

A livello stratigrafico, in tutta la zona, al di sotto di locali coperture di terreni di riporto di varia origine e di diversa consistenza, sono presenti le coperture eluviali detritico-argillose del substrato locale costituito da un deposito conglomeratico ciottoloso-ghiaioso-sabbioso calcareo in matrice argillo-sabbiosa a luoghi abbondante, a luoghi cementato. I clasti sono ben arrotondati, eterometrici, con diametri che arrivano a 10 centimetri. A luoghi, si hanno sabbie grossolane fortemente addensate e/o cementate in sacche, lenti e livelli. Il limite superiore di tale substrato è ondulato come riscontrato con le indagini geognostiche e geofisiche.

Tali depositi conglomeratici fluvio-lacustri hanno potenti spessori: sondaggi profondi eseguiti nella Piana li hanno attraversati verticalmente per centinaia di metri. Sono molto addensati, presentano alte caratteristiche geotecniche ed elevati valori di propagazione delle onde S, come accertato con le indagini geosismiche eseguite, tanto che possono essere considerate come bedrock locale.

Il lotto in esame, in riferimento alla Microzonazione Sismica di Livello 1 è inserito in Zona Stabile suscettibile di amplificazione sismica locale.

In riferimento alla Microzonazione Sismica di Livello 3 il sito risulta inserito in sudi specifici dai quali è emerso un FA = 1.3 nell'intervallo 0,1-0,5 Hz.

Come da R.R. 13 luglio 2016 n. 64, il Livello di Vulnerabilità dell'opera è "Alto", Progetti a controllo obbligatorio, Classe d'Uso IV.

Allo scopo della ricostruzione litostratigrafica-geotecnica-sismica nel rispetto del D.M. Infrastrutture e Trasporti del 17.01.2018 "Aggiornamento delle Norme Tecniche per le Costruzioni",

della Circolare 21.01.2019 n. 7 "Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto mini-steriale 17 gennaio 2018. (S.O. Gazzetta Ufficiale n. 5 del 11/02/2019),

e del Regolamento Regionale 13 luglio 2016, n. 14 – Snellimento e semplificazione delle procedure per l'esercizio delle funzioni regionali in materia di prevenzione del rischio sismico e di repressione delle violazioni della normativa sismica (BUR Lazio n. 56 del 14/07/2016),

sono state eseguite le seguenti prospezioni geognostiche, geotecniche e geofisiche che si ritengono più che buone per la caratterizzazione litostratigrafica e geotecnica del terreno di sedime in relazione al tipo di opera e al contesto geologico in cui questa si colloca:

INDAGINI ESEGUITE in FASE ATTUALE

- 3 SONDAGGI GEOGNOSTICI A ROTAZIONE E CAROTAGGIO CONTINUO di cui 2 attrezzati per Down-Hole che hanno raggiunto ciascuno la profondità di 30 metri dal piano di campagna e che hanno permesso di accertare la litostratigrafia di dettaglio costituita da riporto e copertura eluviale su substrato conglomeratico.
- 14 PROVE PENETROMETRICHE DINAMICHE in foro di sondaggio SPT (Standard Penetration Test).

Sondaggi ed SPT in situ sono stati eseguiti dalla società **Sondedile srl**, Laboratorio autorizzato dal Ministero delle Infrastrutture e dei Trasporti – Concessione n. 3515 del 16/03/2012 – Indagini geognostiche, prelievo di campioni e prove in situ.

- 4 SONDAGGI GEOGNOSTICI A ROTAZIONE E CAROTAGGIO CONTINUO INCLINATI SULLA BASE DI MURATURE E PLINTI DI FONDAZIONE per accertarne la profondità e il terreno di appoggio che è risultato essere il substrato conglomeratico ciottoloso-ghiaioso-sabbioso.
 - Questi sondaggi sono stati eseguiti dalla ditta GeoExploring srl di Frosinone
- PROVE GEOTECNICHE DI LABORATORIO su 2 campioni di terreno.
- <u>3 ANALISI MULTICANALE DELLE ONDE DI SUPERFICIE (M.A.S.W.)</u> per la definizione delle Vs30.
- <u>2 INDAGINI SISMICHE DOWN-HOLE</u> in fori di sondaggio S1_{DH} e S2_{DH} per la definizione dei parametri sismici da correlare con le unità litotecniche e da utilizzare per l'analisi della Risposta Sismica Locale.
- 4 MISURE TROMOGRAFICHE di RUMORE SISMICO a STAZIONE SINGOLA
 PROVA H/V per la determinazione della frequenza di risonanza del terreno.

Non sono state eseguite prove DPSH perché non significative in quanto avrebbero dato immediato rifiuto sui banconi conglomeratici.

INDAGINI ESEGUITE in FASE PREGRESSA - Anno 2010

- 1 SONDAGGIO GEOGNOSTICO A ROTAZIONE E CAROTAGGIO CONTINUO che ha raggiunto la profondità di 20 metri dal piano di campagna.
- 3 PROVE PENETROMETRICHE DINAMICHE in foro di sondaggio SPT (Standard Penetration Test).

Sondaggi ed SPT in situ sono stati eseguiti dalla società *Geostudi srl*.

PROVE GEOTECNICHE DI LABORATORIO su 2 campioni di terreno.

Queste prospezioni sono state eseguite nell'ambito del Progetto per il Miglioramento sismico dell'Edificio della Scuola Media (Secondaria di primo grado).

INDAGINI ESEGUITE in FASE PREGRESSA - Anno 2007

- 2 ANALISI MULTICANALE DELLE ONDE DI SUPERFICIE (M.A.S.W.) per la definizione delle Vs30.
- 2 PROSPEZIONI DI SISMICA A RIFRAZIONE.

Anche queste prospezioni sono state eseguite nell'ambito del Progetto per il Miglioramento sismico dell'Edificio della Scuola Media (Secondaria di primo grado).

In riferimento alle condizioni fondali della Scuola dell'Infanzia, i sondaggi geognostici SF2 e SF3 hanno consentito di accertare che che i plinti di fondazione (su cui poggiano i pilastri) sono in cemento armato con armatura in tondini di ferro liscio e che gli stessi poggiano direttamente sul deposito ciottoloso-ghiaioso-sabbioso alla profondità di 1,50/1,60 metri dal piano del marciapiede perimetrale attuale.

I sondaggi geognostici SF1 e SF4 hanno consentito di accertare che i muri perimetrali posti tra i pilastri/plinti di fondazione poggiano su uno strato di conglomerato cementizio tipo magrone di spessore pari a 40-60 centimetri poggiato a sua volta direttamente sul deposito ciottoloso-ghiaioso-sabbioso alla profondità di 1,50/1,60 metri dal piano del marciapiede perimetrale attuale.

Di seguito vengono riportati i Modelli Geologico-geotecnici interpretati e ricostruiti dallo scrivente in virtù dell'analisi e della sintesi di tutte le risultanze degli elementi di indagine sopra indicati.

MODELLO GEOLOGICO - GEOTECNICO DEL TERRENO DIRETTAMENTE AL DI SOTTO DELLE STRUTTURE FONDALI E MURARIE DELLA SCUOLA DELL'INFANZIA (MATERNA)

Da Piano marciapiede perimetrale a -1,50/1,60 metri:

Plinti isolati di fondazione in c.a. su cui poggiano i pilastri e conglomerato cementizio tipo magrone di spessore pari a 40-60 centimetri su cui poggiano le murature perimetrali poste tra i pilastri.

Da **-1,50 m** a **-35,00 m**:

Deposito ciottoloso-ghiaioso-sabbioso. Terreno a grana grossa e media costituito da ciottoli e ghiaie calcaree e calcareo-marnose a clasti fortemente eterometrici (diametri fino al oltre 10cm), a vario grado di arrotondamento, mal classate, da addensate a molto addensate, in abbondante matrice sabbiosa di colore avana-biancastro e localmente sabbioso-limosa rossastra. Presenti livelletti ghiaiosi pseudo-litoidi, livelli di sabbie grossolane fortemente addensate e noduli di selce biancastra-rossastra.

Peso di volume terreno	Yt = 20,32 – 21,05 kN/m ³
Angolo di attrito interno efficace	φ' = 36,2° - 38,3°
Angolo di attrito interno residuo	φr = 33,0° - 34,8°
Coesione efficace	C' = 5,0 – 8,0 kPa
Coesione residua	Cr = 0,0 - 0,0 kPa
Modulo di Deformazione drenato	E' = 52,5 – 53,9 MPa
Modulo di Taglio Dinamico	G = 150,1 – 194,7 MPa
Modulo di Winkler	K = 15 – 18 kg/cm ³

MODELLO GEOLOGICO - GEOTECNICO MEDIO DEL TERRENO IN CONDIZIONI NATURALI DELL'INTERA ZONA DEL PLESSO SCOLASTICO

1 Da Piano Campagna a –1,00 metro:

Terreno vegetale argilloso marrone con minuti clasti calcarei e laterizi sparsi.

Peso di volume terreno	$Yt = 17.8 - 18.0 \text{ kN/m}^3$
Angolo di attrito interno	φ' = 18° - 20°
Coesione non drenata	Cu = 18 - 19 kPa

2 Da -1,00 m a -1,50/2,50 m:

Brecciole eterometriche a clasti spigolosi e sabbie a granulometria media e grossolana in matrice limoso-argillosa dal marrone al nocciola, localmante preponderante, da mediamente consistenti a dure; presenza di livelli ghiaiosi.

Peso di volume terreno	Yt = 19,39 – 20,36 kN/m ³
Angolo di attrito interno efficace	φ' = 24° - 27°
Coesione efficace	C' = 18,0 – 28,0 kPa
Modulo di Deformazione drenato	E' = 26,8 – 27,5 MPa
Modulo di Taglio Dinamico	G = 115,2 – 124,6 MPa
Modulo di Winkler	$K = 3.0 - 3.5 \text{ kg/cm}^3$

3 Da –1,50/2,50 m a –35,00 m:

Terreno a grana grossa e media costituito da ciottoli e ghiaie calcaree e calcareo-marnose a clasti fortemente eterometrici (diametri fino al oltre 10cm), a vario grado di arrotondamento, mal classate, da addensate a molto addensate, in abbondante matrice sabbiosa di colore avana-biancastro e localmente sabbioso-limosa rossastra. Presenti livelletti ghiaiosi pseudo-litoidi, livelli di sabbie grossolane fortemente addensate e noduli di selce biancastra-rossastra.

Peso di volume terreno	$Yt = 20,32 - 21,05 \text{ kN/m}^3$
Angolo di attrito interno efficace	φ' = 36,2° - 38,3°
Angolo di attrito interno residuo	φr = 33,0° - 34,8°
Coesione efficace	C' = 5,0 – 8,0 kPa
Coesione residua	Cr = 0,0 - 0,0 kPa
Modulo di Deformazione drenato	E' = 52,5 – 53,9 MPa
Modulo di Taglio Dinamico	G = 150,1 – 194,7 MPa
Modulo di Winkler	$K = 15 - 18 \text{ kg/cm}^3$

Il <u>bedrock locale</u> è rappresentato dai depositi ciottolosi che in profondità presentano valori di Vs più alti di 800 m/sec e che hanno spessori di almeno 100 metri come accertato da sondaggi profondi eseguiti nella zona.

Con questa stratigrafia-modello geologico-geotecnico del terreno sono stati confrontati, e ben si accordano, i profili sismici accertati con il DH e i sondaggi sismici verticali MASW.

Tutte le indagini geofisiche-sismiche eseguite, dirette e indirette, hanno portato alla Categoria di Sottosuolo di Fondazione "B".

In ottemperanza a quanto stabilito dalle vigenti normative nazionali (NTC 2018) e regionali (DGR Lazio n. 489 del 17/10/2012), però, pur se in presenza di una chiara categoria di sottosuolo semplificata di NTC, per la definizione delle azioni sismiche alle quali fare riferimento è stato comunque predisposto lo studio di **specifiche analisi di Risposta Sismica Locale (RSL)** per gli Stati Limite di Salvaguardia della Vita (**SLV**) e di Danno (**SLD**).

Con i dati del DH e delle MASW sono stati definiti i sismostrati ed ottenuti i seguenti parametri utilizzati per la modellazione geofisica di input nelle due calcolazioni separate: *densità media*, (g), coefficiente di *Poisson* medio (v - ni), modulo di *deformazione a taglio* medio (G), modulo di *compressibilità edometrica* medio (Ed), *modulo di Young* medio (E) e modulo di *compressibilità volumetrica* medio (Ev).

Il <u>codice di calcolo</u> utilizzato è *EERA* (Bardet et al., 2000), sviluppato nell'anno 1998 in linguaggio Fortran 90 utilizzando i concetti di base di Shake.

EERA è l'acronimo di Equivalent – linear Earthquake Response Analysis ed è una moderna implementazione di concetti ben noti di analisi lineare equivalente della risposta monodimensionale di sito. EERA è tra quelli consigliati dalla DGR 545/2010.

Come <u>input sismici</u> nella modellazione di RSL sono state utilizzate le <u>7 tracce</u> accelerometriche naturali estratte con il software on line *REXELilte* rilasciato dalla <u>ReLUIS di Napoli</u> sul sito dell'INGV.

Per la stima dell'accelerazione di base (ag) è stato utilizzato il <u>foglio di calcolo</u> <u>rilasciato dal Consiglio Superiore LL.PP. Spettri-NTC ver. 1.0.3</u> introducendo le Coordinate espresse nel sistema di riferimento ED50, la Categoria topografica T1 e la strategia di progettazione (Fabbricato strategico in Classe d'Uso IV con Tr=100 anni).

I <u>dati di disaggregazione</u> del sito sono stati ricavati dalla pagina web del sito dell'<u>INGV di Milano S1.</u>

I dati necessari per l'estrazione di input sismici sismocompatibili e spettrocompatibili per gli edifici in oggetto sono riassunti nella tabella seguente.

Coordinate del sito sistema di riferimento ED50	Longitudine: 12,964367 Latitudine: 42,568052		
	Vita nominale (Vn): 100 anni		
	Coefficiente d'uso (Cu): 2		
	Vita di riferimento (Vr): 200 anni		
	Classe d'uso: IV		
Scelta della strategia di progettazione	Categoria topografica: T 1		
	Coefficiente topografico: St = 1,00		
	Stati limite di riferimento: SLV con Tr = 1898 anni SLD con Tr = 201 anni		
Accelerazione orizzontale massima al sito (Se)	Se [g] = 0.402g (SLV) Se [g] = 0.180g (SLD)		
	Magnitudo (M) compresa tra 4 e 7.5 (SLV) (contributo max% 4.5 <m<7.0) (contributo="" (m)="" (sld)="" 4="" 4<m<6.0)<="" 7.0="" compresa="" e="" magnitudo="" max%="" td="" tra=""></m<7.0)>		
Dati di disaggregazione	Distanza (R) compresa tra 0 e 20 km (SLV) Distanza (R) compresa tra 0 e 30 km (SLD)		

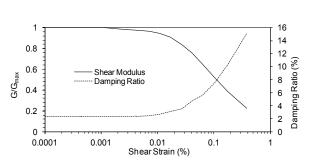
L'analisi di Risposta Sismica Locale è stata condotta, per maggiore accuratezza e precisione, prendendo a riferimento tutti i parametri litostratigrafici, geosismici e geotecnici ricavati dalla varie indagini - Sondaggi con SPT, Down – Hole, M.A.S.W. e Prove HVSR – che hanno consentito di definire il Modello geologico-geotecnico del terreno e la profondità del bedrock di riferimento con Vs > 800 m/sec.

<u>Il Substrato Sismico</u> è stato intercettato con le prospezioni geofisiche tra i 14 e i 20 metri e quindi è stato assunto alla profondità più cautelativa di **14 metri** che ben coincide con le formulazioni che legano le Vs con i valori di frequenza fondamentale del terreno. I parametri dei vari strati sono stati mediati tra i 2 DH e tra i 2 metodi di elaborazioni.

<u>I valori del Coefficiente di Smorzamento</u> dei terreni sono stati calcolati direttamente con il software EERA in base ai valori del Modulo di Taglio accertati per ogni sismostrato con la prova Down-Hole.

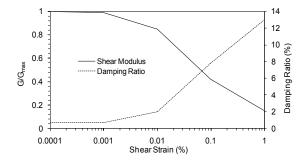
<u>I dati di input litostratigrafico-sismici</u> sono riportati nella tabella seguente.

Averaç	ge shear wa	ave velocity	period (s) = v (m/sec) = sublayers =	752.71		,		,			•	
	Layer Number	Soil Material Type	Number of sublayers in layer	Thickness of layer (m)	Maximum shear modulus G _{max} (MPa)	Initial critical damping ratio (%)	Total unit weight (kN/m ³)	Shear wave velocity (m/sec)	Location and type of earthquake input motion	Location of water table	Depth at middle of layer (m)	Vertical effective stress (kPa)
Surface	1	5		1.0	109.88		20.20	231			0.5	10.10
	2	4		3.0	683.21		22.40	547			2.5	53.80
	3	4		5.0	2166.28		23.35	954			6.5	145.77
	4	4		2.0	1234.86		22.67	731			10	226.82
	5	4		2.0	1709.171631		22.99	854			12	272.47998
	6	4		1.0	1221.247437		22.73	726			13.5	306.834991
Bedrock	7	3			3299.04		24.01	1161	Outcrop		14	318.20


Per ciò che concerne <u>i valori delle curve dei diversi materiali relative ai parametri Strain (%), G/G_{max} e Damping (%) sono stati utilizzati per le argille e per i banchi ghiaiosi quelli forniti dalla Regione Lazio per "Argille e limi" (Mat 5) e "Ghiaie alluvionali e detriti" (Mat 4), mentre per il substrato quelli messi a disposizione dal software EERA per "Rock" (Mat 0).</u>

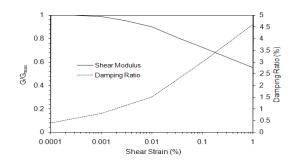
Soil Material Type: 5

Moduli per Argille e Limi (Regione Lazio)


Strain (%)	G/G _{max}	Damping (%)
0.0001	1	2.35
0.00044	0.99999	2.35
0.00079	0.9999	2.35
0.0011	0.999	2.35
0.0017	0.99	2.35
0.0029	0.98	2.35
0.0042	0.975	2.39
0.0072	0.967	2.43
0.011	0.947	2.67
0.017	0.91	3.08
0.027	0.835	3.53
0.042	0.757	4.73
0.063	0.649	5.56
0.105	0.519	7.52
0.18	0.385	10.38
0.387	0.224	15.12

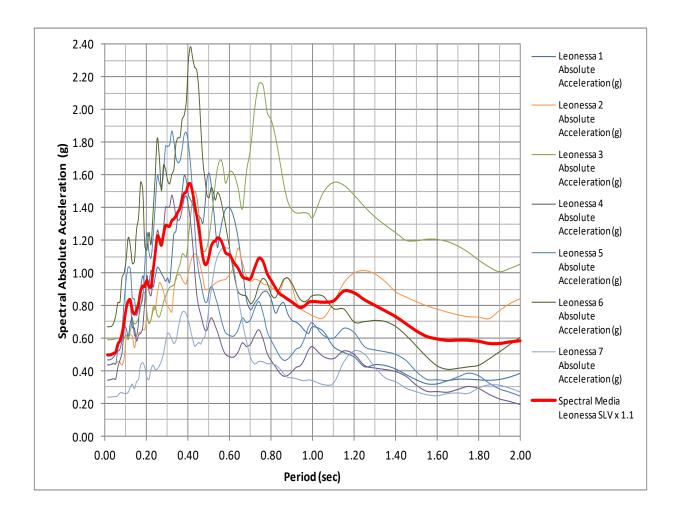
Soil Material Type: 4

Moduli per Ghiaie alluvionali e detriti (Regione Lazio)

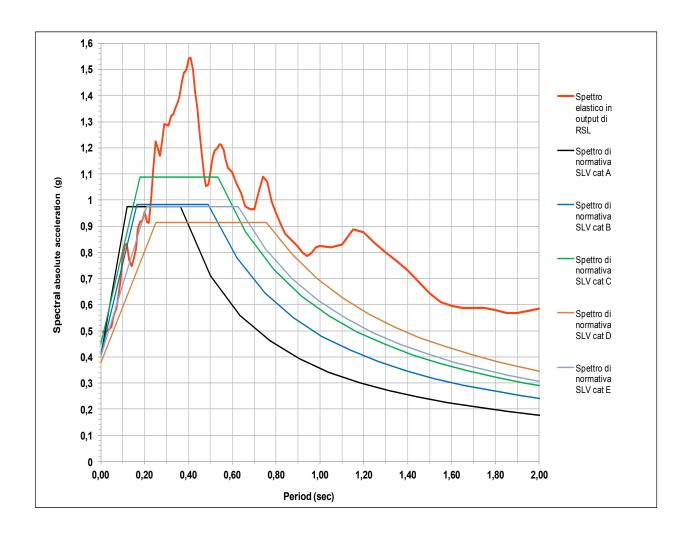

Strain (%)	G/G _{max}	Strain (%)	Damping (%)
0.0001	1	0.0001	0.7
0.001	0.99	0.001	0.7
0.01	0.85	0.01	2
0.1	0.42	0.1	7.8
1	0.15	1	13

Soil Material Type: 0 - Bedrock

Attenuation of rock average and damping in rock


	•	•	•	•
	Strain (%)	G/G _{max}	Strain (%)	Damping (%)
-	0.0001	1	0.0001	0.4
	0.0003	1	0.001	0.8
	0.001	0.9875	0.01	1.5
	0.003	0.9525	0.1	3
	0.01	0.9	1	4.6
	0.03	0.81		
	0.1	0.725		
	1	0.55		

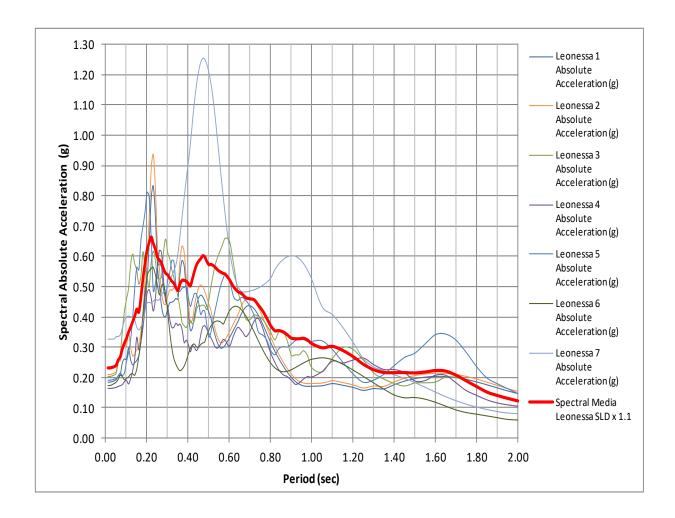
Dalle elaborazioni EERA sulla base dei 7 spettri elastici di accelerazione in RSL è stato calcolato lo spettro elastico medio di accelerazione in RSL per lo Stato Limite di Salvaguardia della Vita "SLV" che viene rappresentato nel grafico seguente.



Spettri di risposta di RSL in riferimento agli accelerogrammi naturali Rexelilte e spettro elastico medio di RSL su stratigrafia sismica S_{DH} - DH - MASW - HVSR per Edificio Scolastico di Leonessa - Classe IV - T1

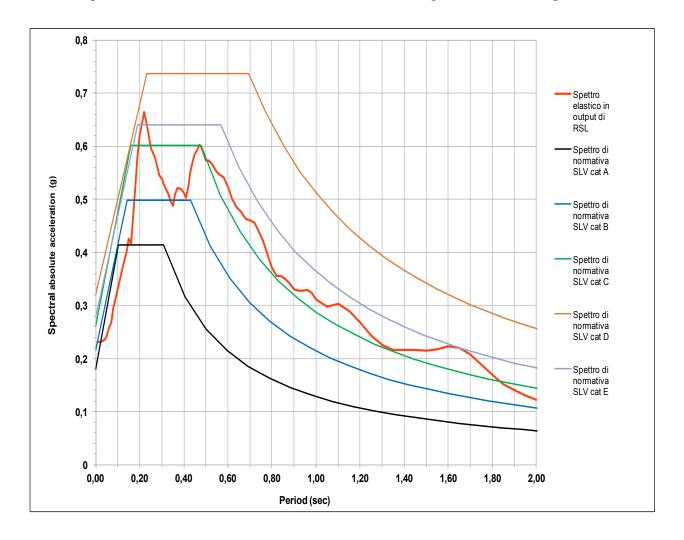
Stato Limite di Salvaguardia della Vita (SLV) – Tr = 1898 anni

Lo spettro elastico medio di RSL è stato poi confrontato, a puro titolo indicativo, con gli spettri di normativa NTC 2018 inerenti le diverse categorie di sottosuolo per SLV.


Confronto, a puro titolo indicativo, tra lo spettro elastico medio di RSL per SLV e gli spettri di NTC 2018 inerenti le diverse Categorie di Sottosuolo di Fondazione Edificio Scolastico di Leonessa - Classe IV – Categoria topografia T1

Stato Limite di Salvaguardia della Vita (SLV) – Tr = 1898 anni

Dalle elaborazioni con EERA sulla base dei 7 spettri elastici di accelerazione in RSL è stato calcolato lo spettro elastico medio di accelerazione in RSL per lo Stato Limite di danno "SLD" che viene rappresentato nel grafico seguente.


Spettri di risposta di RSL in riferimento agli accelerogrammi naturali Rexelilte e spettro elastico medio di RSL su stratigrafia sismica S_{DH} - DH - MASW - HVSR per Edificio Scolastico di Leonessa - Classe IV - T1

Stato Limite di Salvaguardia di Danno (SLD) – Tr = 201 anni

Lo spettro elastico medio di RSL è stato poi confrontato, a puro titolo indicativo, con gli spettri di normativa NTC 2018 inerenti le diverse categorie di sottosuolo per SLD.

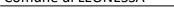
Confronto, a puro titolo indicativo, tra lo spettro elastico medio di RSL per SLD e gli spettri di NTC 2018 inerenti le diverse Categorie di Sottosuolo di Fondazione Edificio Scolastico di Leonessa - Classe IV - Categoria topografia T1 Stato Limite di Salvaguardia di Danno (SLD) – Tr = 201 anni

<u>I risultati delle prove H/V di rumore sismico</u> a stazione singola sono i seguenti:

HVSR1: Picco H/V a 14.38 \pm 11.52 Hz (nell'intervallo 0.0 - 64.0 Hz).

HVSR2: Picco H/V a 14.91 ± 11.87 Hz (nell'intervallo 0.0 - 20.0 Hz).

HVSR3: Picco H/V a 15.00 \pm 2.71 Hz (nell'intervallo 0.0 - 64.0 Hz).


HVSR4: Picco H/V a 14.38 ± 0.67 Hz (nell'intervallo 0.0 - 64.0 Hz).

I 4 picchi H/V, perfettamente confrontabili tra loro, sono considerabili come frequenza di risonanza del sito in quanto sono naturali. In corrispondenza di tali picchi, infatti, è evidente la forma spettrale "a occhio" ("a ogiva"), determinata da un minimo locale della componente verticale, che è quella che caratterizza i picchi H/V di origine naturale. I primi tre presentano disturbi antropici che portano a non rispettare tutti i Criteri Sesame, al contrario del quarto che rispetta tutti i Criteri.

A livello stratigrafico-sismico, quindi, le 4 prove H/V sono interpretabili come indicative di un sito in cui è presente, a debole profondità, un livello con forte contrasto di impedenza sismica interpretabile come bedrock sismico locale, in accordo con quanto rilevato con le MASW e i DH.

A livello di pericolosità geologica, in base alle indagini ed agli studi eseguiti, riassumendo quanto segue per il sito di intervento:

- terreno pianeggiante e lontano da cigli di scarpate;
- area priva di fenomeni di dissesto;
- area priva di problematiche idrauliche;
- coefficiente topografico pari a St=1,0;
- assenza di contatti stratigrafici fra terreni significativamente diversi in fondazione;
- non evidenza di fagliazione in superficie;
- area non interessata da faglie attive e capaci;
- assenza di cavità e di sacche di gas;
- assenza di falda acquifera per profondità di almeno 30 metri (sondaggi);
- terreni granulometricamente e per assenza di falda non soggetti a liquefazione;

- assenza di livelli e banchi di materiali di riporto in fondazione;
- assenza di terreni fortemente degradati e/o molli e cedevoli dal piano fondale;
- esclusione di fenomeni di alluvionamento;
- esclusione di fenomeni di impaludamento;
- area non rientrante nelle zone perimetrate a rischio idrogeologico e idraulico nel PAI dell'ABT ai sensi del DL 180/98;
- area simicamente amplificabile;

si può ritenere che la pericolosità geologica del sito sia da considerare di attenzione a livello amplificativo sismico e di variabilità geotecnica in relazione al carattere strategico che riveste l'edificio scolastico anche nelle funzioni di protezione civile essendo anche sede di COC, nonché rientrando lo stesso tra le "Costruzioni con livelli di prestazioni elevati" di cui alle NTC 2018 Paragrafo 2.4.1.- Tab. 2.4.1.

L'elemento da segnalare e da tenere in debito conto nella progettazione geotecnica, infatti, è dato dalla variabilità laterale e verticale dello spessore dei terreni di riporto sui depositi naturali argilloso-ghiaiosi.

Una tale situazione comporta che la fondazione superficiale dovrà comunque risultare impostata per intero almeno nel banco 2 del Modello Geologico-geotecnico del terreno naturale.

Resta inteso, dunque, che il superamento di tale profondità con il piano di appoggio fondale, dovrà essere sempre verificato in fase operativa di scavo visto che le indagini sono puntuali e l'intervento presenta una certa estensione.

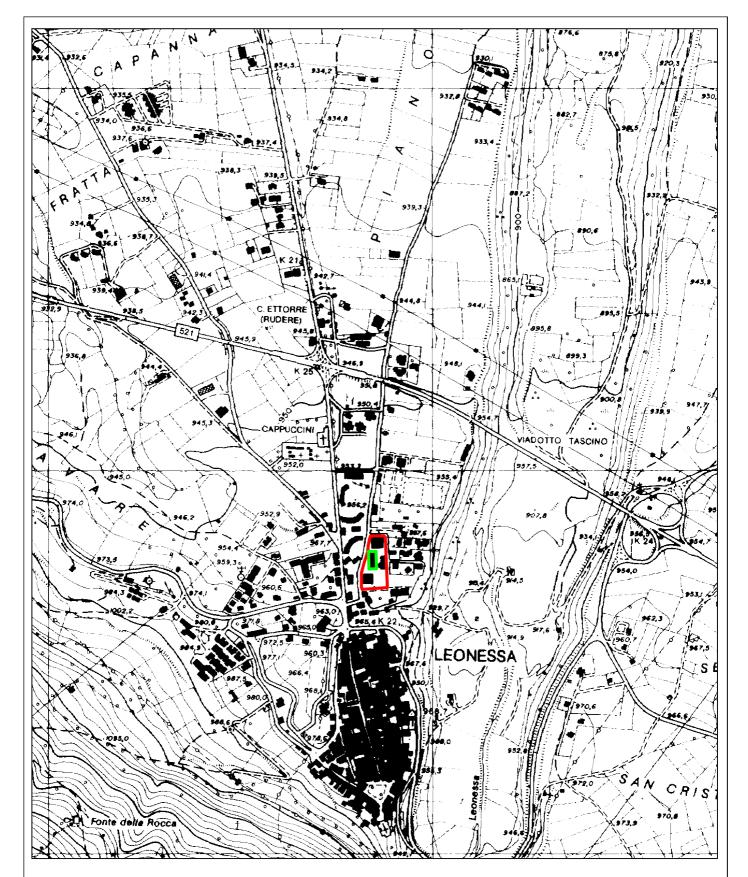
A livello idraulico, visto che il sito risulta interessato da abbondanti acque di precipitazioni atmosferiche, vista la presenza di terreni superficiali a bassa permeabilità, è assolutamente necessaria la realizzazione di adeguate strutture drenanti che dovranno garantire lo smaltimento delle acque superficiali avendo cura di incanalarle e smaltirle in modo da tenere asciutto il sito e di non andare ad intaccare le linee naturali di deflusso per non ingenerare fenomeni di dissesto idrogeologico.

A livello sismico, va attentamente valutata l'amplificazione locale in riferimento alle vigenti normative nazionali e regionali e alle Ordinanze del Commissario al Sisma in materia.

Oltre a ribadire il rispetto delle varie indicazioni illustrate di volta in volta si elencano le condizioni seguenti:

- la superficie interessata da eventuali movimenti di terra sia limitata allo stretto necessario alla realizzazione dei lavori:
- il materiale terroso e lapideo sia sistemato stabilmente sul posto e quello in esubero smaltito a norma di legge;
- vengano regimate opportunamente le acque di ruscellamento superficiale mediante adeguate opere di drenaggio che rispettino le linee naturali di deflusso, senza alterarle, per non ingenerare pericolosi fenomeni di dissesto idrogeologico;
- tutti gli eventuali riporti e i drenaggi siano effettuati con materiale granulare scevro da sostanze organiche, che possa garantire adeguate caratteristiche drenanti, alleggerimento sulla struttura e idonee capacità portanti, classificabili CNR UNI 10060 come Al, A3, A2-4 e A2-5, con alto angolo di attrito interno (almeno 35°), buon peso di volume (almeno19.5 kN/mc) e con ottime capacità drenanti;
- l'interessato si impegni a realizzare tutte le opere necessarie al riassetto del suolo che gli verranno imposte, qualora durante lo svolgimento dei lavori si dovessero ravvisare situazioni di turbativa all'ambiente, per ciò che attiene l'assetto idrogeologico; opere da realizzarsi sotto il controllo di un tecnico qualificato a livello geologico e idrogeologico;
- tutte le opere siano realizzate nel più assoluto rispetto delle norme tecniche vigenti per le costruzioni in zone sismiche;
- vengano rispettate tutte le condizioni di sicurezza sul lavoro in considerazione del fatto che durante le opere di sbancamento e di lavorazione possono verificarsi distacchi di materiali lapidei, coesivi e murari, che dovranno essere previsti all'atto della lavorazione e fronteggiati con opportune opere di sostegno, anche provvisorie, qualora se ne ravvisasse la necessità.

Costituiscono parte integrante della presente Relazione i seguenti elaborati geotematici.



- INQUADRAMENTO TERRITORIALE CTR scala 1:10.000
- INQUADRAMENTO TERRITORIALE CTR scala 1:5.000
- STRALCIO CARTA GEOLOGICA GENERALE scala 1:25.000
- STRALCIO CARTA GEOLOGICA DI DETTAGLIO scala 1:5.000
- STRALCIO CARTA DELLE PENDENZE scala 1:5.000
- STRALCIO DEL PAI TEVERE scala 1:5.000
- STRALCIO DEL PAI TEVERE AGGIORNAMENTO scala 1:5.000
- CARTA GEOLOGICO-TECNICA DA STUDIO DI MS1-MS3 scala 1:5.000
- SEZIONI GEOLOGICHE DA STUDIO DI MS3 scala 1:5.000
- CARTA DELLE MOPS DI MICROZONAZIONE SISMICA DI LIVELLO 1 scala 1:5.000
- CARTA DELLE MOPS DI MICROZONAZIONE SISMICA DI LIVELLO 1-3 scala 1:5.000
- CARTA DI MICROZONAZIONE SISMICA DI LIVELLO 3 scala 1:5.000
- PLANIMETRIA CATASTALE scala 1:1.000
- CARTA UBICAZIONE INDAGINI GEOGNOSTICHE, GEOTECNICHE E GEOFISICHE
- RAPPORTO RISULTANZE SONDAGGI con SPT e ATTREZZATI DH "S1DH" e "S2DH"
- RAPPORTO RISULTANZE SONDAGGI su BASE FONDAZIONI e su BASE MURATURE"
- RAPPORTO PROVE DI LABORATORIO GEOTECNICO SU CAMPIONI INDISTURBATI
- RELAZIONE DI CALCOLO PROVE SPT
- RAPPORTO PROVA GEOFISICA DOWN-HOLE "DH1"
- RAPPORTO PROVA GEOFISICA DOWN-HOLE "DH2"
- RAPPORTO PROFILI SISMICI VERTICALI M.A.S.W. da "M 1" ad "M 4"
- RAPPORTO PROVE DI RUMORE SISMICO da HVSR 1 a HVSR 4
- RAPPORTO RISULTANZE SONDAGGIO con SPT "S" (fase pregressa)
- RAPPORTO PROVE di LABORATORIO (fase pregressa)
- RAPPORTO PROVE MASW e SISMICA A RIFRAZIONE (fase pregressa)

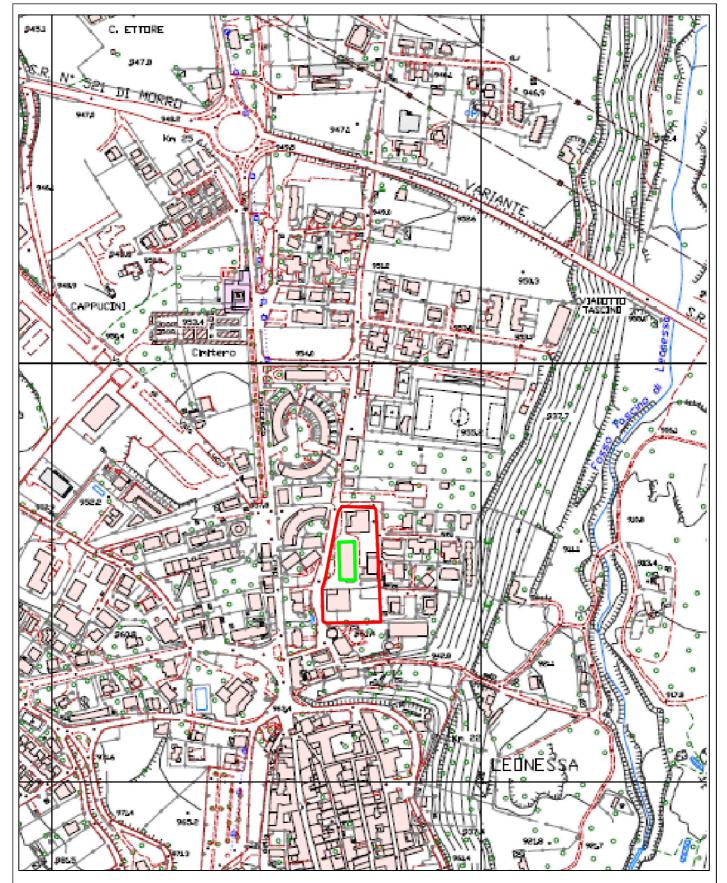
Leonessa, 02 agosto 2019

Dott. Geol. Francesco CHIARETTI

Ordine dei Geologi del Lazio n. 600

INQUADRAMENTO TERRITORIALE

Scala 1:10.000


Stralcio della Carta Tecnica Regionale - Sezione N. 347040 "Leonessa" Equidistanza curve di livello: m 10

Perimetro Plesso Scolastico di Leonessa con Scuole dell'Infanzia, Primaria e Secondaria di Primo Grado e Palestra

Scuola dell'Infanzia (Materna)

INQUADRAMENTO TERRITORIALE

Scala 1:5.000

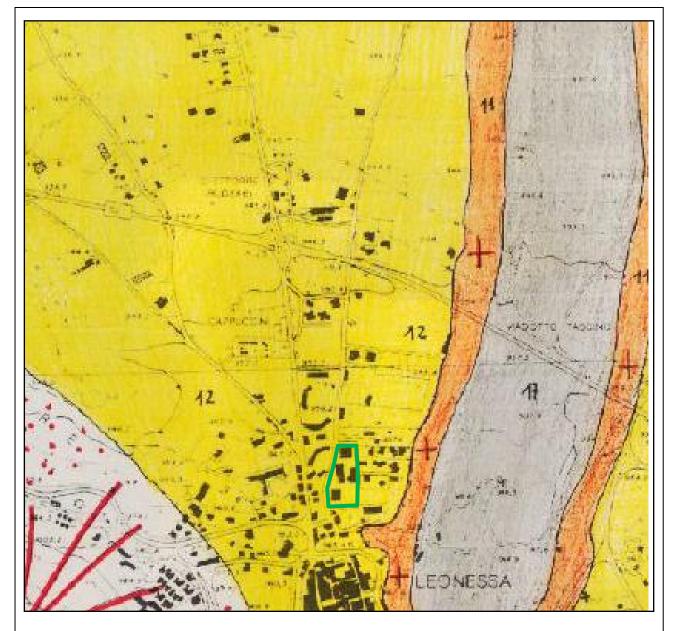
Stralcio della Carta Tecnica Regionale - Elemento N. 347042 "Leonessa" Equidistanza curve di livello: m 5

Perimetro Plesso Scolastico di Leonessa con Scuole dell'Infanzia, Primaria e Secondaria di Primo Grado e Palestra

Scuola dell'Infanzia (Materna)

CARTA GEOLOGICA GENERALE

Scala 1:30.000


Ingrandimento Carta Geologica d'Italia a scala 1.100.000 – Foglio 139 L'Aquila

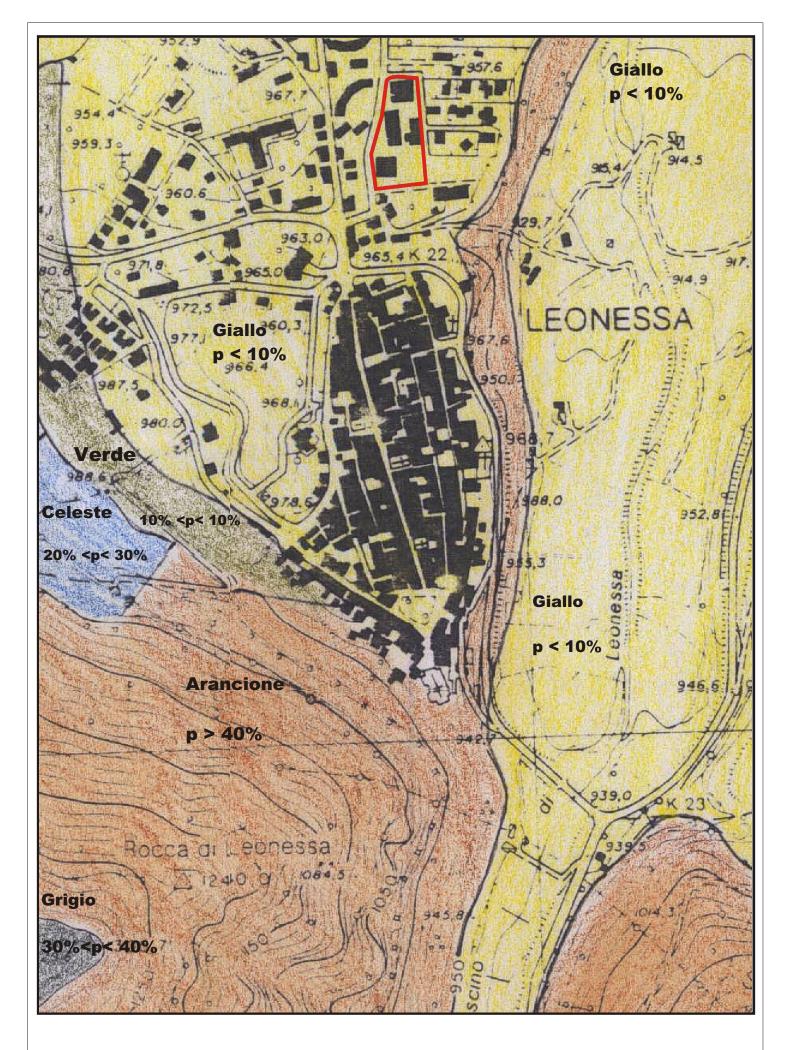
In giallo/avana (sito di intervento): Coperture eluviali dei depositi lacustri e fluvio-lacustri (Olocene).

Puntini e tratti rossi: Detrito di falda e conoidi di detrito (Olocene).

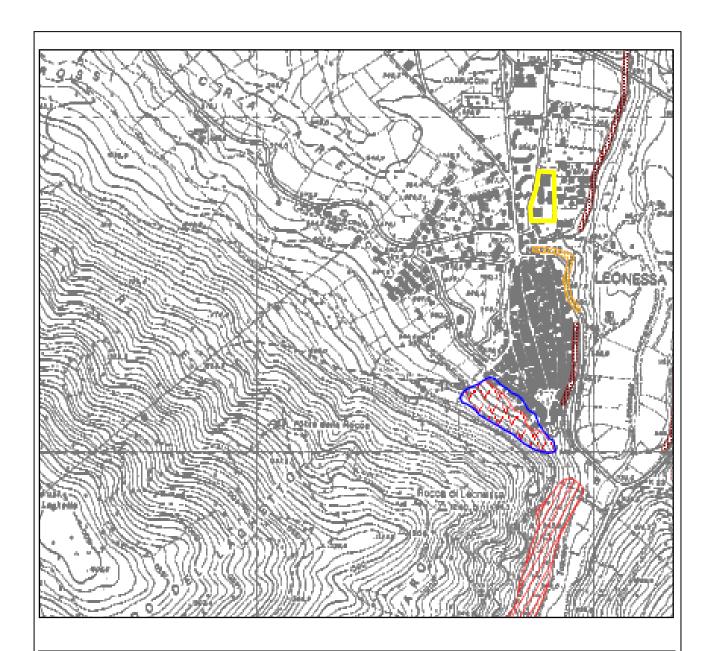
In verde e blu: Calcari e calcari marnosi (Cretacico-Giurassico).

Cerchio rosso: sito di intervento.

CARTA GEOLOGICA DI INQUADRAMENTO


Scala 1:5.000

- 12 Giallo (sito di intervento): Coperture eluviali dei depositi lacustri e fluvio-lacustri (11).
- 11- Conglomerati ciottolosi, ghiaiosi, sabbiosi, lacustri e fluvio-lacustri, in strati e banchi.
 - 15 Puntini e tratti rossi: Detrito di falda e conoidi di detrito.

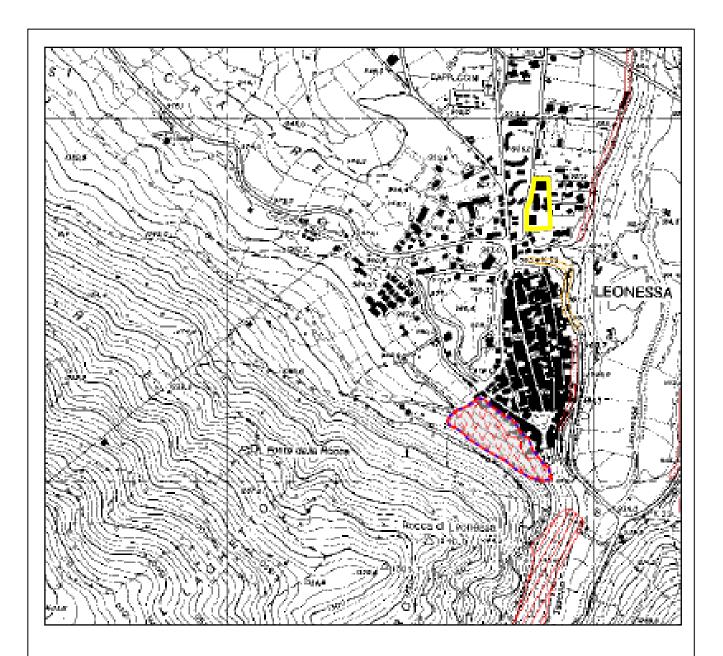

17- Alluvioni recenti e attuali.

Croce di colore rosso: strati e banchi orizzontali/suborizzontali

Contorno verde: sito di intervento.

CARTA DELLE PENDENZE scala 1:5.000 (ingrandimento CTR)

Autorità di Bacino del Fume Tevere


via Bachelet,12 - 00185 - ROMA - 06492491 - www.abtevere.it

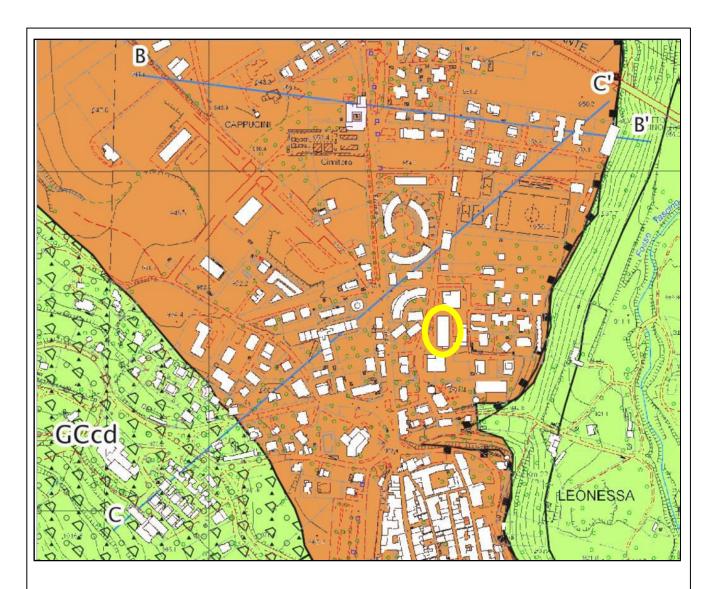
Piano Stralcio di Assetto Idrogeologico

Stralcio del PAI dell'Autorità di Bacino del Fiume Tevere

Tavola 135 dell'Inventario dei Fenomeni Franosi e Situazioni di Rischio da Frana (Sud)

Il sito (contorno giallo) risulta privo di dissesti

Autorità di Bacino del Fiume Tevere


via V. Bachelet, 12 - 00185 - ROMA - 06492491 - www.abtevere.it

Piano Stralcio di Asetto Idrogeologico Progetto di primo aggiornamento

Stralcio del PAI dell'Autorità di Bacino del Fiume Tevere Rev. 2010

Tavola 135 di 304 dell'Inventario dei Fenomeni Franosi e Situazioni di Rischio da Frana (Sud)

Il sito (contorno giallo) risulta privo di dissesti

Carta Geologico-tecnica per MS1 – MS3 scala 1:5.000

Ripresa dagli Studi di Microzonazione Sismica di Livello 1 e 3 redatti dallo Scrivente

Cerchio giallo: sito di intervento

Terreni di copertura

GCcd Ghiaie argillose,

miscela di ghiaia, sabbia e argilla di conoide detritica

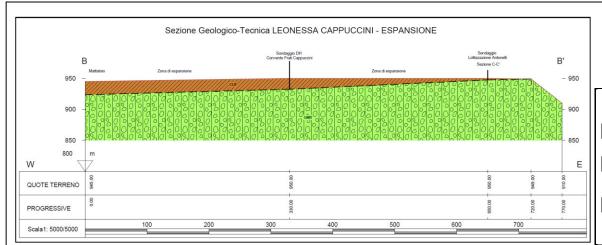
GCfd Ghiaie argillose,

miscela di ghiaia, sabbia e argilla di falda detritica

GPpi Ghiaie pulite con granulometria poco assortita, miscela di ghiaia e sabbia di piana inondabile

GMfl Ghiale limose,

miscela di ghiaia, sabbia e limo di deposito fluvio lacustre


CLfl Argille inorganiche di medio-bassa plasticità

argille ghiaiose o sabbiose, argille limose, argille magre di deposito fluvio lacustre

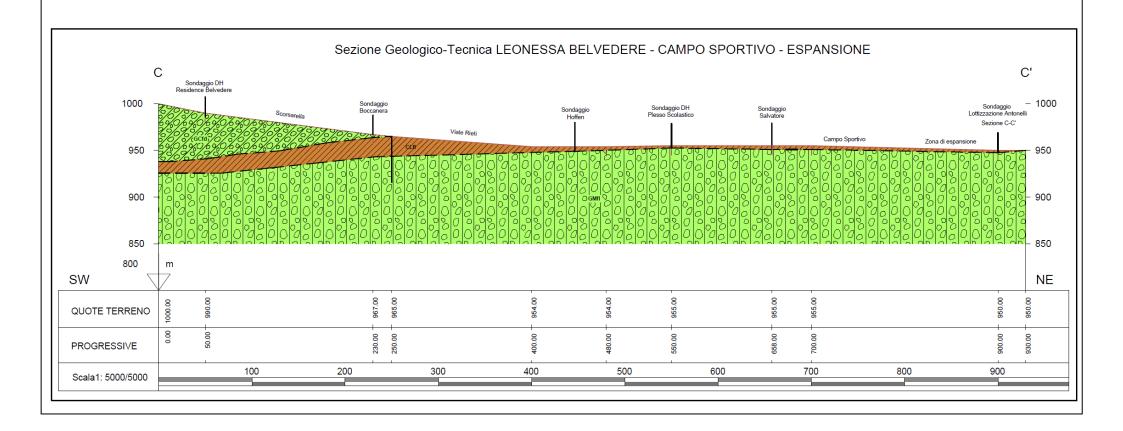
CLIC Argille inorganiche di medio-bassa plasticità

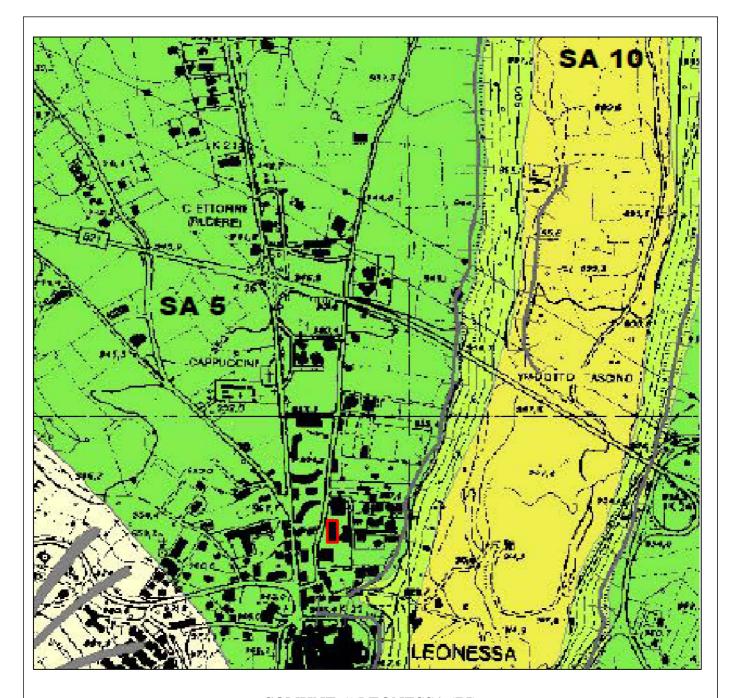
argille ghiaiose o sabbiose, argille limose, argille magre lacustre

Argille inorganiche di medio-bassa plasticità argille ghiaiose o sabbiose, argille limose, argille magre di eluvi/colluvi

SEZIONI GEOLOGICO-TECNICHE DI MS1 -MS3

LEGENDA LITOLOGIE

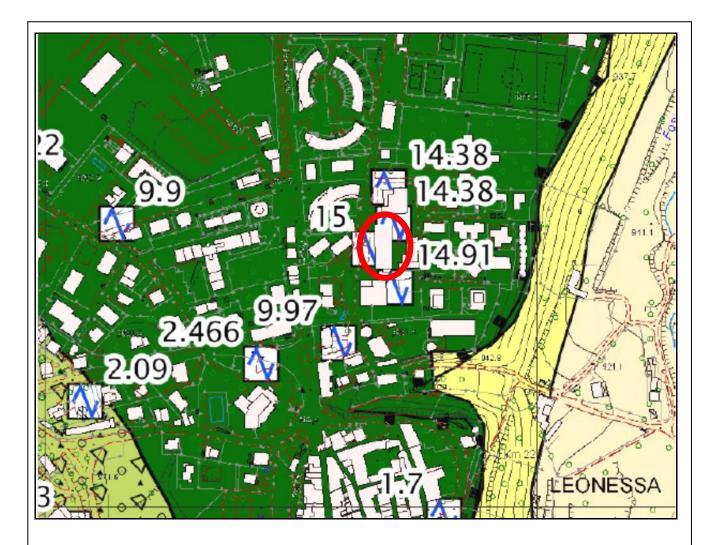

Detriti di faida e di conoide indifferenziati a ciasti debolmente elaborati in matrice argillosa localmente abbondante, generalmente stabilizzati e pedogenizzati; terre rosse miste a detriti. (GCfd - GCcd).



Argille marroni, brune e nere, consistenti, con brecce calcaree e selciose eterometriche generalmente sparse e subordinate, livelli detritici con ciasti spigolosi decarbonati, straterelli sabbiosi e sabbioso-limosi arrossati molto addensati, ienti di paleosuoli e locali Intercalazioni e lembi di copertura di materiali tufitici risedimentati; frequenti strutture sedimentarie di trasporto colluviale (Complesso alluvionale-eluviale fluvio-lacustre). (CLfl).

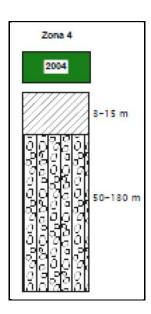
Ciottoli, ghiale e sabble (alluvioni ciottolose terrazzate) fortemente addensate, spesso cementate in banchi suborizzontali, con minerali vulcanici; sabbie dense, sabbie argiliose e argilie biancastre e gialiastre da consistenti a dure; marne dure grigiastre in livelli ripetuti e suborizzontali; a luoghi con livelli sabbioso-travertinosi e congiomeratici che rappresentano il tetto dei complesso (Complesso conglomeratico-sabbioso-argilloso fluvio-lacustre e lacustre). La frazione ciottolosa più grossolana e preponderante nella parte occidentale della Piana (conoide di Leonessa), mentre la frazione più fine è maggiormente rappresentata nella metà orientale della piana (Colleverde, Viesci e Sant'Angelo). (GMfl)

COMUNE di LEONESSA (RI)


Plesso scolastico di Leonessa Scuole dell'Infanzia, Primaria e Secondaria di Primo Grado e Palestra Adeguamento sismico Scuola dell'Infanzia (Materna)

 $\underline{\mathsf{MICROZONAZIONE}\;\mathsf{SISMICA}\;\mathsf{di}\;\mathsf{LIVELLO}\;\mathsf{1}}$

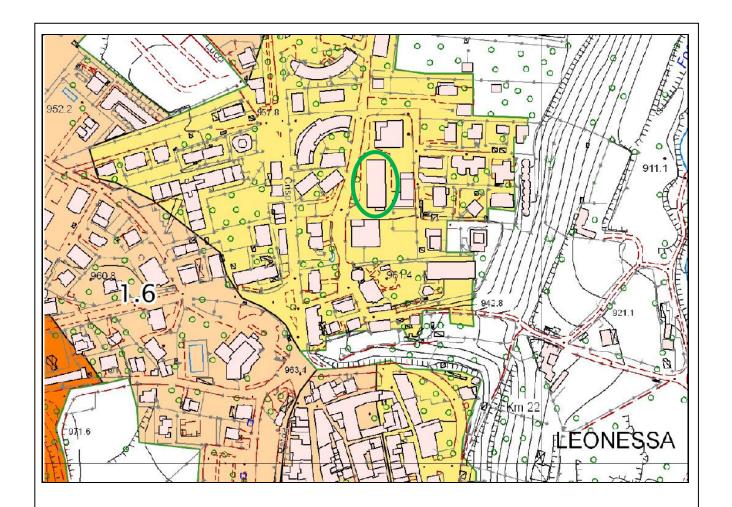
CARTA DELLE MOPS - Scala 1:5.000


Da tavola Geotematica di MS1 redatta dallo scrivente

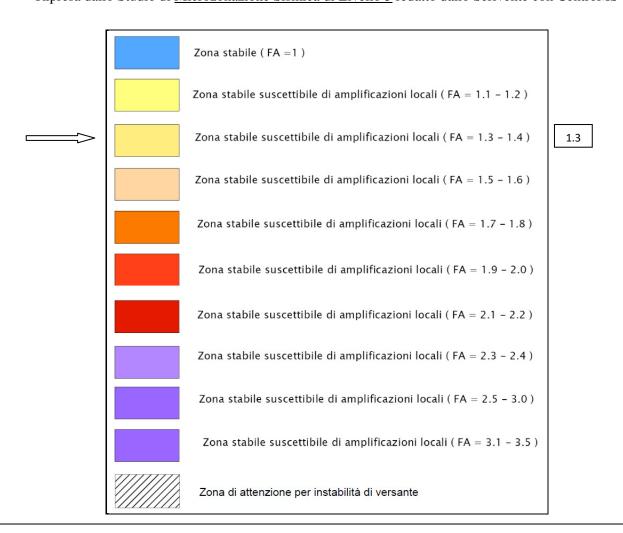
SA5 - Area suscettibile di amplificazione sismica locale: copertura argillosa-brecciosa su substrato conglomeratico

Carta delle Microzone Omogenee in Prospettiva Sismica L1-L3 scala 1:5.000

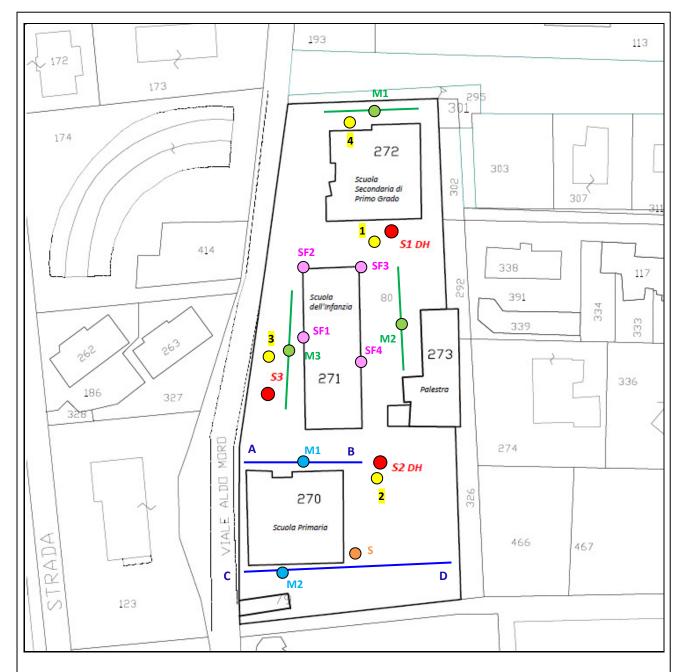
Ripresa dallo Studio di Microzonazione Sismica di Livello 1-3 redatto dallo Scrivente



Argilie mamoni, brune e nere, consistenti, con brecce calcaree e selciose eterometriche generalmente sparse e subordinate, livelii detritici con ciasti spigolosi decarbonati, straterelli sabbiosi e sabbioso-limosi arrossati molto addensati, lenti di paleosuoli e locali intercalazioni e lembi di copertura di materiali tuffici risedimentati; frequenti strutture sedimentarie di trasporto colluviale (Complesso alluvionale-eluviale fluvio-lacustre). (CLIII).


Argille, talora torbose, da mediamente consistenti a dure; argille sabbiose e ghialose molto consistenti; mame grigiastre dure e sabbie dense più o meno argillose e argilloso-ilmose; si rinvengono manifestazioni di lignite, frustoli carboniosi e, nella parte alta, livelli lentiformi di tufti (Complesso argilloso-marnoso-lignitifero Jacustre). (Zona 7 e Zona 10 - CLIo).

Ciottoli, ghiale e sabble (alluvioni ciottolose terrazzate) fortemente addensate, spesso cementate in banchi suborizzontali, con minerali vuicanici; sabble dense, sabble angliose e anglile biancastre e gialiastre da consistenti a dure; mame dure grigiastre in livelii ripetuti e suborizzontali; a luogni con livelii sabbloso-travertinosi e congiomeratici che rappresentano il tetto dei complesso (Complesso congiomeratico-sabbloso-angliloso fluvio-lacustre e lacustre). La frazione ciottolosa più grossolana è preponderante nella parte occidentale della Piana (conoide di Leonessa), mentre la frazione più fine è maggiormente rappresentata nella meta orientale della piana (dall'allineamento Piedelpoggio-Casanova verso esti. (GMM)



Stralcio Carta di <u>Microzonazione Sismica di Livello 3 FA = 0.1-0.5 Hz</u> - Scala 1:5.000 Ripresa dallo Studio di <u>Microzonazione Sismica di Livello 3</u> redatto dallo Scrivente con CentroMS

Comune di Leonessa (RI) - Capoluogo - Viale Aldo Moro Plesso scolastico - Scuole: dell'Infanzia, Primaria e Secondaria di Primo Grado e Palestra Adeguamento sismico Scuola dell'Infanzia (Materna)

CARTA UBICAZIONE INDAGINI GEOGNOSTICHE - GEOTECNICHE - GEOFISICHE

ATTUALI e PREGRESSE

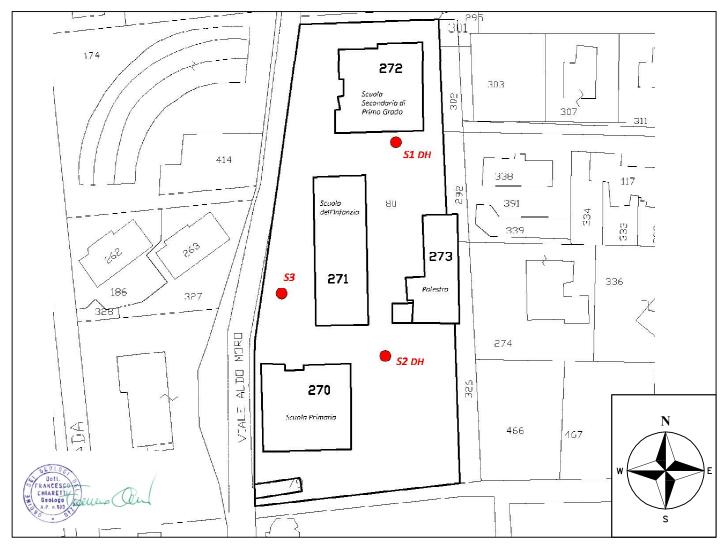
- Sondaggi geognostici a rotazione e carotaggio continuo con SPT (Fase attuale)
 - **DH** attrezzati per prova in foro Down-Hole
 - S eseguito nel 2010 per il miglioramento sismico della Scuola Elementare (Primaria)
- O Sondaggi geognostici eseguiti inclinati su base-muratura/fondazione (Fase attuale)
 - Prospezioni sismiche MASW (Fase attuale)
 - Prospezioni sismiche MASW
 Linee sismiche a rifrazione

Indagini eseguite nel 2007 per il miglioramento sismico della Scuola Elementare (Primaria)

Misure di rumore sismico a stazione singola HVSR (Fase attuale)

Ubicazione e risultati di dettaglio nei rispettivi rapporti allegati a fine relazione

UBICAZIONE INDAGINI


Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Pag. 1/1

Committente: COMUNE di LEONESSA (RI)

Cantiere: studio di vulnerabilità sismica del plesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel Comune di Leonessa (RI). Foglio n. 95 - Particelle 270, 271, 272, 273.

Fuori scala

Note: S1DH Sondaggio geognostico S1DH - lat. 42,567363; long. 12,963618 (WGS84)

S2DH Sondaggio geognostico S2DH - lat. 42,566790; long. 12,9635591 (WGS84)

S3 Sondaggio geognostico S3 - lat. 42,566982; long. 12,963206 (WGS84)

STRATIGRAFIA SONDAGGIO S1DH

Certificato nº 629

del 13/02/2017

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Procedura di prova: IDL 7A/1 Normativa di riferimento: Racc. AGI 1977

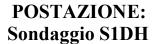
Pag.1/1

Committente: Comune di Leonessa	scolastico dell'Infanzia, grado e Palestra sito i	i vulnerabilità sismica Primaria e Secondaria n viale Aldo Moro nel (95 - Particelle 270, 271, 27	di primo Comune di	laggio: S1DH	Data	ı inizio/fine: 27-30/01/17	
Ubicazione sondaggio: lat. 42,5673°; long. 12	2,9636° (WGS84)	Quota boccaforo: 961 m s.l.m. Geologo:			lott.geol. Scappa Alessandro		
Macchina operatrice: Sonda MORI M45	Metodo perfora	z.: WIRE-LINE	Diam. perfo	razione mm. 1	101	Carotiere: semplice	

Profondità	Potenza	Simbologia	Descrizione litostratigrafica	Falda	Rivestimento provvisorio	Campioni	Prof. SPT	N° di colpi	Rivestimento definitivo	Pocket (MPa) rifiuto > 0.6	Carotaggio	Scala 1:200
- 0.80 - 2.60	1.80 0.8		Terreno vegetale argilloso marrone con minuti clasti calcarei e resti di laterizi sparsi Recupero materiale: spezzoni di carota.				- 2.00	5				1 2 3
2.00			Brecciole eterometriche a clasti spigolosi (2-3cm) e sabbie a granulometria media e grossolana in matrice argillosa di colore variabile dal marrone al nocciola, localmente preponderante, da mediamente consistenti a consistenti. Recupero materiale: spezzoni di carota e materiale sciolto.				-5.00	3 3 28 50	tato all'esterno			4 5 6 7 8
	0		Terreno a grana grossa da addensato a molto addensato, costituito da ciottoli e ghiaie calcaree e selciose eterometriche (diametro dei clasti superiore ai 10cm) da sub-arrotondati ad angolosi, in abbondante matrice sabbiosa e sabbioso-limosa avana-biancastra. Localmente, livelli prettamente				- 9.00	50	e sp. 4.8mm), cemen			9 10 11 12 13
	27.40		sabbiosi grossolani con ghiaietto fortemente addensati. Recupero materiale: spezzoni di carota e materiale sciolto.		ф 127		-15.0	50	in PVC (¢ 90mm e			15 16 17 18 19
							- 20.0	50	Rivestimento definitivo in PVC (\$\phi\$ 90mm e sp. 4.8mm), cementato all'esterno			20 21 22 23 24 25
30.00												26 27 28 29 30

Note: falda acquifera non presente.

Il direttore del laboratorio (dott.geol. Scappa Alessandro)



SONDAGGIO S1DH

Documentazione fotografica

Pag.1/3

S1DH -C1 Da 0.00m a 5.00m

SONDAGGIO S1DH

Documentazione fotografica

Pag.2/3

S1DH -C2 Da 5.00m a 10.00m

S1DH -C3 Da 10.00m a 15.50m

S1DH -C4 Da 15.50m a 20.50m

SONDAGGIO S1DH

Documentazione fotografica

Pag.3/3

S1DH -C5 Da 20.50m a 25.00m

S1DH -C5 Da 25.00m a 30.00m

PROVA PENETROMETRICA DINAMICA S.P.T.

Certificato nº 630

del 13/02/2017

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Procedura di prova: IDL 7A/3 Normativa di riferimento: Racc. AGI 1977

Committente: Comune di Leonessa

Cantiere: studio di vulnerabilità sismica del olesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel nune di Leonessa (RI). Foglio n. 95 - Particelle 270,

Sondaggio: S1DH Prova nº: SPT1 Data esec. prova: 27/01/17

Ubicazione sondaggio: lat. 42,5673°; long. 12,9636° (WGS84)

Quota boccaforo: 961 m s.l.m.

Geologo: dott.geol. Scappa Alessandro

Macchina operatrice: Sonda MORI M45

Metodo perforaz.: WIRE - LINE

Diam. perforazione mm: 101

Carotiere: semplice

Profondità esecuzione prova SPT1: 2.00 m

Profondità falda acquifera (m dal p.c.): —

CARATTERISTICHE CAMPIONATORE

Campionatore Raymond:

271, 272, 273

PUNTA APERTA

PUNTA CHIUSA 🔀

Massa battente:

M = 63.50 Kg

Altezza caduta libera:

H = 0.76 m

Diametro punta conica:

D = 51.00 mm

Area base punta conica:

A = 20.43 cmq

Angolo apertura punta:

 $\alpha = 60^{\circ}$

Lunghezza aste:

La = 1.50 m

Massa aste per metro:

Ma = 7.00 Kg

Diametro aste:

 φ = 50.00 mm

Avanzamento punta:

 $\delta = 0.15 \text{ m}$

Numero di colpi punta:

N= N(15) Relativo ad un avanzamento di 15 cm

VALORE MISURATO: $N_1 = 5$ $N_2 = 3$

 $N_3 = 3$

NSPT=6

Il direttore del laboratorio (dott.geol. Scappa Alessandro)

PROVA PENETROMETRICA DINAMICA S.P.T.

Certificato nº 631

del 13/02/2017

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Procedura di prova: IDL 7A/3 Normativa di riferimento: Racc. AGI 1977

Committente: Comune di Leonessa

Cantiere: studio di vulnerabilità sismica del olesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel Comune di Leonessa (RI). Foglio n. 95 - Particelle 270, 271, 272, 273

Sondaggio: S1DH Prova nº: SPT2 Data esec. prova: 27/01/17

Ubicazione sondaggio: lat. 42,5673°; long. 12,9636° (WGS84)

Quota boccaforo: 961 m s.l.m.

Geologo: dott.geol. Scappa Alessandro

Macchina operatrice: Sonda MORI M45

Metodo perforaz.: WIRE - LINE

Diam. perforazione mm: 101

Carotiere: semplice

Profondità esecuzione prova SPT2: 5.00 m

Profondità falda acquifera (m dal p.c.): —

CARATTERISTICHE CAMPIONATORE

Campionatore Raymond:

PUNTA APERTA

PUNTA CHIUSA 🔀

Massa battente:

M = 63.50 Kg

Altezza caduta libera:

H = 0.76 m

Diametro punta conica:

D = 51.00 mm

Area base punta conica:

A = 20.43 cmq

Angolo apertura punta:

 $\alpha = 60^{\circ}$

Lunghezza aste:

La = 1.50 m

Massa aste per metro:

Ma = 7.00 Kg

Diametro aste:

 φ = 50.00 mm

Avanzamento punta:

 $\delta = 0.15 \text{ m}$

Numero di colpi punta:

N= N(15) Relativo ad un avanzamento di 15 cm

VALORE MISURATO: $N_1 = 28$ $N_2 = 50$

 $N_3 = -$

NSPT = 50 (Rif.)

Osservazioni: Per N2=50 avanzamento di 11 cm

Il direttore del laboratorio (dott.geol. Scappa Alessandro)

PROVA PENETROMETRICA DINAMICA S.P.T.

Certificato nº 632

del 13/02/2017

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Procedura di prova: IDL 7A/3 Normativa di riferimento: Racc. AGI 1977

Committente: Comune di Leonessa

Cantiere: studio di vulnerabilità sismica del olesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel Comune di Leonessa (RI). Foglio n. 95 - Particelle 270, 271, 272, 273

Sondaggio: S1DH Prova nº: SPT3 Data esec. prova: 27/01/17

Ubicazione sondaggio: lat. 42,5673°; long. 12,9636° (WGS84)

Quota boccaforo: 961 m s.l.m. | Geologo: dott.geol. Scappa Alessandro

Macchina operatrice: Sonda MORI M45

Metodo perforaz.: WIRE - LINE

Diam. perforazione mm: 101

Carotiere: semplice

Profondità esecuzione prova SPT3: 9.00 m

Profondità falda acquifera (m dal p.c.): —

CARATTERISTICHE CAMPIONATORE

Campionatore Raymond:

PUNTA APERTA PUNTA CHIUSA 🔀

M = 63.50 KgMassa battente:

Altezza caduta libera: H = 0.76 m

Diametro punta conica: D = 51.00 mm

Area base punta conica: A = 20.43 cmq

Angolo apertura punta: $\alpha = 60^{\circ}$

Lunghezza aste: La = 1.50 m

Massa aste per metro: Ma = 7.00 Kg

 φ = 50.00 mm Diametro aste:

Avanzamento punta: $\delta = 0.15 \text{ m}$

Numero di colpi punta: N= N(15) Relativo ad un avanzamento di 15 cm

VALORE MISURATO: $N_1 = 50$ $N_2 = -$

 $N_3 = -$

NSPT = 50 (Rif.)

Osservazioni: Per N1=50 avanzamento di 10 cm

Il direttore del laboratorio (dott.geol. Scappa Alessandro)

PROVA PENETROMETRICA DINAMICA S.P.T.

Certificato nº 633

del 13/02/2017

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Procedura di prova: IDL 7A/3 Normativa di riferimento: Racc. AGI 1977

Committente: Comune di Leonessa

Cantiere: studio di vulnerabilità sismica del olesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel Comune di Leonessa (RI). Foglio n. 95 - Particelle 270, 271, 272, 273

Sondaggio: S1DH Prova nº: SPT4 Data esec. prova: 27/01/17

Ubicazione sondaggio: lat. 42,5673°; long. 12,9636° (WGS84)

Quota boccaforo: 961 m s.l.m.

Geologo: dott.geol. Scappa Alessandro

Macchina operatrice: Sonda MORI M45

Metodo perforaz.: WIRE - LINE

Diam. perforazione mm: 101

Carotiere: semplice

Profondità esecuzione prova SPT4: 16.00 m

Profondità falda acquifera (m dal p.c.): —

CARATTERISTICHE CAMPIONATORE

Campionatore Raymond:

PUNTA APERTA

PUNTA CHIUSA 🔀

Massa battente:

M = 63.50 Kg

Altezza caduta libera:

H = 0.76 m

Diametro punta conica:

D = 51.00 mm

Area base punta conica:

A = 20.43 cmq

Angolo apertura punta:

 $\alpha = 60^{\circ}$

Lunghezza aste:

La = 1.50 m

Massa aste per metro:

Ma = 7.00 Kg

Diametro aste:

 φ = 50.00 mm

Avanzamento punta:

 $\delta = 0.15 \text{ m}$

Numero di colpi punta:

N= N(15) Relativo ad un avanzamento di 15 cm

VALORE MISURATO: $N_1 = 50$ $N_2 = -$

 $N_3 = -$

NSPT = 50 (Rif.)

Osservazioni: Per N1=50 avanzamento di 4 cm

Il direttore del laboratorio (dott.geol. Scappa Alessandro)

PROVA PENETROMETRICA DINAMICA S.P.T.

Certificato nº 634

del 13/02/2017

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Procedura di prova: IDL 7A/3 Normativa di riferimento: Racc. AGI 1977

Committente: Comune di Leonessa

Cantiere: studio di vulnerabilità sismica del olesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel Comune di Leonessa (RI). Foglio n. 95 - Particelle 270, 271, 272, 273

Sondaggio: S1DH Prova nº: SPT5 Data esec. prova: 27/01/17

Ubicazione sondaggio: lat. 42,5673°; long. 12,9636° (WGS84)

Quota boccaforo: 961 m s.l.m.

Geologo: dott.geol. Scappa Alessandro

Macchina operatrice: Sonda MORI M45

Metodo perforaz.: WIRE - LINE

Diam. perforazione mm: 101

Carotiere: semplice

Profondità esecuzione prova SPT5: 20.00 m

Profondità falda acquifera (m dal p.c.): —

CARATTERISTICHE CAMPIONATORE

Campionatore Raymond:

PUNTA APERTA PUNTA CHIUSA 🔀

M = 63.50 KgMassa battente:

Altezza caduta libera: H = 0.76 m

Diametro punta conica: D = 51.00 mm

Area base punta conica: A = 20.43 cmq

Angolo apertura punta: $\alpha = 60^{\circ}$

Lunghezza aste: La = 1.50 m

Massa aste per metro: Ma = 7.00 Kg

 φ = 50.00 mm Diametro aste:

Avanzamento punta: $\delta = 0.15 \text{ m}$

Numero di colpi punta: N= N(15) Relativo ad un avanzamento di 15 cm

VALORE MISURATO: $N_1 = 50$ $N_2 = -$

 $N_3 = -$

NSPT = 50 (Rif.)

Osservazioni: Per N1=50 avanzamento di 1 cm

Il direttore del laboratorio (dott.geol. Scappa Alessandro)

Macchina operatrice: Sonda MORI M45

Ministero delle Infrastrutture e dei Trasporti
Autorizzazione a svolgere attività di esecuzione
e certificazione di indagini geognostiche,
prelievo di campioni e prove in sito - SETTORE C
(Circolare 08/092010, n.7619/STC)
Concessione n. 3515 del 16/03/2012

STRATIGRAFIA SONDAGGIO S2DH

Certificato nº 635

del 13/02/2017

Carotiere: semplice

Pag.1/1

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Diam. perforazione mm: 101

Procedura di prova: IDL 7A/1 Normativa di riferimento: Racc. AGI 1977

Committente: Comune di Leonessa

Cantiere: studio di vulnerabilità sismica del plesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel Comune di Leonessa (RI). Foglio n. 95 - Particelle 270, 271, 272, 273.

Ubicazione sondaggio: lat. 42,5667°; long. 12,9635° (WGS84)

Quota boccaforo: 962 m s.l.m. Geologo: dott.geol. Scappa Alessandro

Metodo perforaz.: WIRE-LINE

Profondità	Potenza	Simbologia	Descrizione litostratigrafica	Falda	Rivestimento provvisorio	Campioni	Prof. SPT	N° di colpi	Rivestimento definitivo	Pocket (MPa) rifiuto > 0.6	Carotaggio	Scala 1:200
- 1.00 - 2.50	1.50 1.00		Terreno vegetale argilloso marrone con minuti clasti calcarei e resti di laterizi sparsi Recupero materiale: spezzoni di carota.			1.30 C1 1.70	- 2.00	4				1 2 3
			Brecciole eterometriche a clasti spigolosi (2-3cm) e sabbie a granulometria media e grossolana in matrice argillosa di colore variabile dal marrone al nocciola, localmente preponderante, da mediamente consistenti a consistenti. Recupero materiale: spezzoni di carota e materiale sciolto.				- 7.00	35 50	ntato all'esterno			4 5 6 7 8
	27.50		Terreno a grana grossa da addensato a molto addensato, costituito da ciottoli e ghiaie calcaree e selciose eterometriche (diametro dei clasti superiore ai 10cm) da sub-arrotondati ad angolosi, in abbondante matrice sabbiosa e sabbioso-limosa avana-biancastra. Localmente, livelli prettamente sabbiosi grossolani con ghiaietto fortemente				-12.0	50	m e sp. 4.8mm), ceme			10 11 12 13 14
	2		addensati. Recupero materiale: spezzoni di carota e materiale sciolto.		ф 127		-18.0	50	Rivestimento definitivo in PVC (\$\phi\$ 90mm e sp. 4.8mm), cementato all'esterno			16 17 18 19 20 21
30.00							- 25.0	50	Rivestimento de			22 23 24 25 26 27 28 29

Note: falda acquifera non presente.

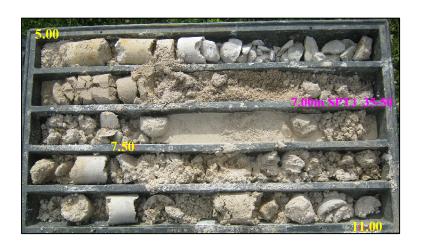
Il direttore del laboratorio (dott.geol. Scappa Alessandro)

SONDAGGIO S2DH

Documentazione fotografica

Pag.1/3

POSTAZIONE: Sondaggio S2DH



SONDAGGIO S2DH

Documentazione fotografica

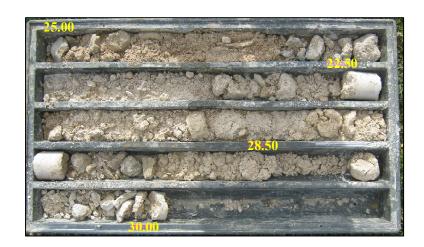
Pag.2/3

S2DH -C2 Da 5.00m a 11.00m

S2DH -C3 Da 11.00m a 16.00m

S2DH -C4 Da 16.00m a 20.50m

SONDAGGIO S2DH


Documentazione fotografica

Pag.3/3

S2DH -C5 Da 20.50m a 25.00m

S2DH -C5 Da 25.00m a 30.00m

PRELIEVO CAMPIONI INDISTURBATI E A DISTURBO LIMITATO

Certificato nº 636 del 13/02/2017

Procedura di prova: IDL 7A/2	Normativa di riferimento: Racc. AGI 1977	Pag.1/1

Committente: Comune di Leonessa Cantiere: studio di vulner scolastico dell'Infanzia, Primaria grado e Palestra sito in viale Ale Leonessa (RI). Foglio n. 95 - Partice		ia e Secondaria di primo Aldo Moro nel Comune di	Sondaggio: S2D 1	H Data preli	ievo del campione: 30/01/17
Ubicazione sondaggio: lat. 42,5667°; long. 1	2,9635° (WGS84)	Quota boccafo	oro: 962 m s.l.m.	Geologo: do	ott.geol. Scappa Alessandro
Macchina operatrice: Sonda MORI M45	Metodo perforaz.:	WIRE-LINE	Diam. perforazi	one mm: 101	Diam. rivestimento mm: 127

Sondaggio n°:	S2dh	
Profondità:	30 m	
Tipo sondaggio:	Rotazione [X]	Percussione
Avanzamento:	Distruzione	Carotaggio 🔀
Profondità falda acquifera (m dal p.c.):		

Sigla campione:	Profondità:		Campionatore:	Diametro	Classe del campione:
	da m a m campionatore. camp		campionatore (mm):	r	
C1	1.30	1.70	Shelby	86	Q3

Osservazioni:	Il direttore del laboratorio (dott.geol. Scappa Alessandro)

del 16/03/2012

PROVA PENETROMETRICA DINAMICA S.P.T.

Certificato nº 637

del 13/02/2017

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Procedura di prova: IDL 7A/3 Normativa di riferimento: Racc. AGI 1977

Pag. 1/1

Committente: Comune di Leonessa

| Cantiere: studio di vulnerabilità sismica del plesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel Comune di Leonessa (RI). Foglio n. 95 - Particelle 270, 271, 272, 273.
| Sondaggio: S2DH | Prova n°: SPT1 | Data esec. prova: 30/01/17 |
| Data esec. prova: 30/01/17 |
| Ubicazione sondaggio: lat. 42,5667°; long. 12,9635° (WGS84) | Quota boccaforo: 962 m s.l.m. | Geologo: dott.geol. Scappa Alessandro

Macchina operatrice: Sonda MORI M45 | Metodo perforaz.: WIRE - LINE | Diam. perforazione mm: 101 | Carotiere: semplice

Profondità esecuzione prova SPT1: 2.00 m

Profondità falda acquifera (m dal p.c.): —

CARATTERISTICHE CAMPIONATORE **Campionatore Raymond:** PUNTA APERTA PUNTA CHIUSA 🔀 M = 63.50 KgMassa battente: Altezza caduta libera: H = 0.76 mDiametro punta conica: D = 51.00 mmArea base punta conica: A = 20.43 cmq Angolo apertura punta: $\alpha = 60^{\circ}$ Lunghezza aste: La = 1.50 mMassa aste per metro: Ma = 7.00 Kg φ = 50.00 mm Diametro aste: Avanzamento punta: $\delta = 0.15 \text{ m}$ Numero di colpi punta: N= N(15) Relativo ad un avanzamento di 15 cm

VALORE MISURATO: $N_1=4$ $N_2=4$ $N_3=4$

NSPT=8

Il direttore del laboratorio (dott.geol. Scappa Alessandro)

PROVA PENETROMETRICA DINAMICA S.P.T.

Certificato nº 638

del 13/02/2017

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Procedura di prova: IDL 7A/3 Normativa di riferimento: Racc. AGI 1977

Committente: Comune di Leonessa

Cantiere: studio di vulnerabilità sismica del olesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel Comune di Leonessa (RI). Foglio n. 95 - Particelle 270, 271, 272, 273

Sondaggio: S2DH Prova nº: SPT2 Data esec. prova: 30/01/17

Ubicazione sondaggio: lat. 42,5667°; long. 12,9635° (WGS84)

Quota boccaforo: 962 m s.l.m.

Geologo: dott.geol. Scappa Alessandro

Macchina operatrice: Sonda MORI M45

Metodo perforaz.: WIRE - LINE

Diam. perforazione mm: 101

Carotiere: semplice

Profondità esecuzione prova SPT2: 7.00 m

Profondità falda acquifera (m dal p.c.): —

CARATTERISTICHE CAMPIONATORE

Campionatore Raymond: PUNTA APERTA

PUNTA CHIUSA 🔀

Massa battente:

M = 63.50 Kg

Altezza caduta libera:

H = 0.76 m

Diametro punta conica:

D = 51.00 mm

Area base punta conica:

A = 20.43 cmq

Angolo apertura punta:

 $\alpha = 60^{\circ}$

Lunghezza aste:

La = 1.50 m

Massa aste per metro:

Ma = 7.00 Kg

Diametro aste:

 φ = 50.00 mm

Avanzamento punta:

 $\delta = 0.15 \text{ m}$

Numero di colpi punta:

N= N(15) Relativo ad un avanzamento di 15 cm

VALORE MISURATO:

 $N_1 = 35$

 $N_2 = 50$

 $N_3 = -$

NSPT = 50 (Rif.)

Osservazioni: Per N2=50 avanzamento di 4 cm

Il direttore del laboratorio (dott.geol. Scappa Alessandro)

PROVA PENETROMETRICA DINAMICA S.P.T.

Certificato nº 639

del 13/02/2017

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Procedura di prova: IDL 7A/3 Normativa di riferimento: Racc. AGI 1977

Committente: Comune di Leonessa

Cantiere: studio di vulnerabilità sismica del olesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel nune di Leonessa (RI). Foglio n. 95 - Particelle 270, 271, 272, 273

Sondaggio: S2DH Prova nº: SPT3 Data esec. prova: 30/01/17

Ubicazione sondaggio: lat. 42,5667°; long. 12,9635° (WGS84)

Quota boccaforo: 962 m s.l.m.

Geologo: dott.geol. Scappa Alessandro

Macchina operatrice: Sonda MORI M45

Metodo perforaz.: WIRE - LINE

Diam. perforazione mm: 101

Carotiere: semplice

Profondità esecuzione prova SPT3: 12.00 m

Profondità falda acquifera (m dal p.c.): —

CARATTERISTICHE CAMPIONATORE

Campionatore Raymond:

PUNTA APERTA PUNTA CHIUSA 🔀

M = 63.50 KgMassa battente:

Altezza caduta libera: H = 0.76 m

Diametro punta conica: D = 51.00 mm

Area base punta conica: A = 20.43 cmq

Angolo apertura punta: $\alpha = 60^{\circ}$

Lunghezza aste: La = 1.50 m

Massa aste per metro: Ma = 7.00 Kg

 φ = 50.00 mm Diametro aste:

Avanzamento punta: $\delta = 0.15 \text{ m}$

Numero di colpi punta: N= N(15) Relativo ad un avanzamento di 15 cm

VALORE MISURATO: $N_1 = 50$ $N_2 = -$

 $N_3 = -$

NSPT = 50 (Rif.)

Osservazioni: Per N1=50 avanzamento di 5 cm

Il direttore del laboratorio (dott.geol. Scappa Alessandro)

PROVA PENETROMETRICA DINAMICA S.P.T.

Certificato nº 640

del 13/02/2017

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Procedura di prova: IDL 7A/3 Normativa di riferimento: Racc. AGI 1977

Committente: Comune di Leonessa

Cantiere: studio di vulnerabilità sismica del olesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel Comune di Leonessa (RI). Foglio n. 95 - Particelle 270, 271, 272, 273

Sondaggio: S2DH Prova nº: SPT4 Data esec. prova: 30/01/17

Ubicazione sondaggio: lat. 42,5667°; long. 12,9635° (WGS84)

Quota boccaforo: 962 m s.l.m.

Geologo: dott.geol. Scappa Alessandro

Macchina operatrice: Sonda MORI M45

Metodo perforaz.: WIRE - LINE

Diam. perforazione mm: 101

Carotiere: semplice

Profondità esecuzione prova SPT4: 18.00 m

Profondità falda acquifera (m dal p.c.): —

CARATTERISTICHE CAMPIONATORE

Campionatore Raymond: PUNTA APERTA

PUNTA CHIUSA 🔀

Massa battente:

M = 63.50 Kg

Altezza caduta libera:

H = 0.76 m

Diametro punta conica:

D = 51.00 mm

Area base punta conica:

A = 20.43 cmq

Angolo apertura punta:

 $\alpha = 60^{\circ}$

Lunghezza aste:

La = 1.50 m

Massa aste per metro:

Ma = 7.00 Kg

Diametro aste:

 φ = 50.00 mm

Avanzamento punta:

 $\delta = 0.15 \text{ m}$

Numero di colpi punta:

N= N(15) Relativo ad un avanzamento di 15 cm

VALORE MISURATO: $N_1 = 50$ $N_2 = -$

 $N_3 = -$

NSPT = 50 (Rif.)

Osservazioni: Per N1=50 avanzamento di 3 cm

Il direttore del laboratorio (dott.geol. Scappa Alessandro)

PROVA PENETROMETRICA DINAMICA S.P.T.

Certificato nº 641

del 13/02/2017

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Procedura di prova: IDL 7A/3 Normativa di riferimento: Racc. AGI 1977

Committente: Comune di Leonessa

Cantiere: studio di vulnerabilità sismica del olesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel Comune di Leonessa (RI). Foglio n. 95 - Particelle 270, 271, 272, 273

Sondaggio: S2DH Prova nº: SPT5 Data esec. prova: 31/01/17

Ubicazione sondaggio: lat. 42,5667°; long. 12,9635° (WGS84)

Quota boccaforo: 962 m s.l.m.

Geologo: dott.geol. Scappa Alessandro

Macchina operatrice: Sonda MORI M45

Metodo perforaz.: WIRE - LINE

Diam. perforazione mm: 101

Carotiere: semplice

Profondità esecuzione prova SPT5: 25.00 m

Profondità falda acquifera (m dal p.c.): —

CARATTERISTICHE CAMPIONATORE

Campionatore Raymond:

PUNTA APERTA PUNTA CHIUSA 🔀

M = 63.50 KgMassa battente:

Altezza caduta libera: H = 0.76 m

Diametro punta conica: D = 51.00 mm

Area base punta conica: A = 20.43 cmq

Angolo apertura punta: $\alpha = 60^{\circ}$

Lunghezza aste: La = 1.50 m

Massa aste per metro: Ma = 7.00 Kg

 φ = 50.00 mm Diametro aste:

Avanzamento punta: $\delta = 0.15 \text{ m}$

Numero di colpi punta: N= N(15) Relativo ad un avanzamento di 15 cm

VALORE MISURATO: $N_1 = 50$ $N_2 = -$

 $N_3 = -$

NSPT = 50 (Rif.)

Osservazioni: Per N1=50 avanzamento di 1 cm

Il direttore del laboratorio (dott.geol. Scappa Alessandro)

STRATIGRAFIA SONDAGGIO S3

Certificato nº 642

del 13/02/2017

Pag.1/1

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Procedura di prova: IDL 7A/1 Normativa di riferimento: Racc. AGI 1977

Committente: Comune di Leonessa

Cantiere: studio di vulnerabilità sismica del plesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel Comune di Leonessa (RI). Foglio n. 95 - Particelle 270, 271, 272, 273.

Ubicazione sondaggio: lat. 42,5669°; long. 12,9632° (WGS84)

Quota boccaforo: 962 m s.l.m.

Geologo: dott.geol. Scappa Alessandro

Macchina operatrice: Sonda MORI M45

Metodo perforaz.: WIRE-LINE

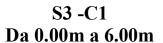
Diam. perforazione mm: 101

Carotiere: semplice

Profondità	Potenza	Simbologia	Descrizione litostratigrafica	Falda	Rivestimento provvisorio	Campioni	Prof. SPT	N° di colpi	Rivestimento definitivo	Pocket (MPa) rifiuto > 0.6	Carotaggio	Scala 1:150	
- 1.00	1.00		Terreno vegetale argilloso marrone con minuti clasti calcarei e resti di laterizi sparsi										1
- 5.00	4.00		Recupero materiale: spezzoni di carota. Brecciole eterometricheBrecciole eterometriche a clasti spigolosi (2-3cm) e sabbie a granulometria media e grossolana in matrice argillosa di colore variabile dal marrone al nocciola, localmente preponderante, da mediamente consistenti a			2.60 C1 3.00	-1.60	8 12 20					2 3 4 5
3.00			consistenti. Ciottoli e ghiaie molto abbondanti tra -1,50m e -2,20 metri. Recupero materiale: spezzoni di carota e materiale sciolto. Terreno a grana grossa da addensato a molto addensato, costituito da ciottoli e ghiaie calcaree e selciose eterometriche (diametro dei clasti superiore ai 10cm) da sub-arrotondati ad angolosi, in				-8.00	25 50					6 7 8 9
	15.00		abbondante matrice sabbiosa e sabbioso-limosa avana-biancastra. Localmente, livelli prettamente sabbiosi grossolani con ghiaietto fortemente addensati. Recupero materiale: spezzoni di carota e materiale sciolto.		ф 127		-12.0	50				1	12 13
20.00							-17.0	50				1	15 16 17 18

Note: falda acquifera non presente.

Il direttore del laboratorio (dott.geol. Scappa Alessandro)


SONDAGGIO S3

Documentazione fotografica

Pag.1/2

POSTAZIONE: Sondaggio S3

SONDAGGIO S3

Documentazione fotografica

Pag.2/2

S3 -C2 Da 6.00m a 12.00m

S3 -C3 Da 12.00m a 17.00m

S3 -C4 Da 17.00m a 20.00m

Committente: Comune di Leonessa

Ministero delle Infrastrutture e dei Trasporti Autorizzazione a svolgere attività di esecuzione e certificazione di indagini geognostiche, prelievo di campioni e prove in sito - SETTORE C (Circolare 08/092010, n.7619/STC) Concessione n. 3515 del 16/03/2012

PRELIEVO CAMPIONI INDISTURBATI E A DISTURBO LIMITATO

Certificato nº 643 del 13/02/2017

Procedura di prova: IDL 7A/2 Normativa di riferimento: Racc. AGI 1977

Cantiere: studio di vulnerabilità sismica del plesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel Comune Leonessa (RI). Foglio n. 95 - Particelle 270, 271, 272, 273.

Sondaggio: S3

Data prelievo del campione: 01/02/17

Pag.1/1

Quota boccaforo: 962 m s.l.m. Ubicazione sondaggio: lat. 42,5669°; long. 12,9632° (WGS84) Geologo: dott.geol. Scappa Alessandro

Macchina operatrice: Sonda MORI M45 Metodo perforaz.: WIRE-LINE Diam. perforazione mm: 101 Diam. rivestimento mm: 127

Sondaggio n°:	S3	
Profondità:	20 m	
Tipo sondaggio:	Rotazione [X]	Percussione
Avanzamento:	Distruzione	Carotaggio 💢
Profondità falda acquifera (m dal p.c.):		

Sigla campione:	Profondità:		Campionatore:	Diametro	Classe del campione:		
	da m				P	campionatore (mm):	r r
C1	2.60	3.00	Shelby	86	Q3		

Osservazioni: Il direttore del laboratorio (dott.geol. Scappa Alessandro)

PROVA PENETROMETRICA DINAMICA S.P.T.

Certificato nº 644

del 13/02/2017

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Procedura di prova: IDL 7A/3 Normativa di riferimento: Racc. AGI 1977

Committente: Comune di Leonessa

Cantiere: studio di vulnerabilità sismica del olesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel nune di Leonessa (RI). Foglio n. 95 - Particelle 270, 271, 272, 273

Sondaggio: S3

Prova n°: **SPT1** Data esec. prova: **01/02/17**

Ubicazione sondaggio: lat. 42,5669°; long. 12,9632° (WGS84)

Quota boccaforo: 962 m s.l.m.

Geologo: dott.geol. Scappa Alessandro

Macchina operatrice: Sonda MORI M45

Metodo perforaz.: WIRE - LINE

Diam. perforazione mm: 101

PUNTA APERTA

Carotiere: semplice

PUNTA CHIUSA 🔀

Profondità esecuzione prova SPT1: 1.60 m

Profondità falda acquifera (m dal p.c.): —

CARATTERISTICHE CAMPIONATORE

Campionatore Raymond:

M = 63.50 Kg

Altezza caduta libera:

Massa battente:

H = 0.76 m

Diametro punta conica:

D = 51.00 mm

Area base punta conica:

A = 20.43 cmq

Angolo apertura punta:

 $\alpha = 60^{\circ}$

Lunghezza aste:

La = 1.50 m

Massa aste per metro:

Ma = 7.00 Kg

Diametro aste:

 φ = 50.00 mm

Avanzamento punta:

 $\delta = 0.15 \text{ m}$

Numero di colpi punta:

N= N(15) Relativo ad un avanzamento di 15 cm

VALORE MISURATO: $N_1 = 8$ $N_2 = 12$

 $N_3 = 20$

NSPT=32

Il direttore del laboratorio (dott.geol. Scappa Alessandro)

PROVA PENETROMETRICA DINAMICA S.P.T.

Certificato nº 645

del 13/02/2017

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Procedura di prova: IDL 7A/3 Normativa di riferimento: Racc. AGI 1977

Committente: Comune di Leonessa

Cantiere: studio di vulnerabilità sismica del olesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel nune di Leonessa (RI). Foglio n. 95 - Particelle 270,

Sondaggio: S3

Prova n°: SPT2 Data esec. prova: 01/02/17

Ubicazione sondaggio: lat. 42,5669°; long. 12,9632° (WGS84)

Quota boccaforo: 962 m s.l.m.

Geologo: dott.geol. Scappa Alessandro

Macchina operatrice: Sonda MORI M45

Metodo perforaz.: WIRE - LINE

Diam. perforazione mm: 101

Carotiere: semplice

Profondità esecuzione prova SPT2: 8.00 m

Profondità falda acquifera (m dal p.c.): —

CARATTERISTICHE CAMPIONATORE

Campionatore Raymond: PUNTA APERTA

271, 272, 273

PUNTA CHIUSA 🔀

Massa battente:

M = 63.50 Kg

Altezza caduta libera:

H = 0.76 m

Diametro punta conica:

D = 51.00 mm

Area base punta conica:

A = 20.43 cmq

Angolo apertura punta:

 $\alpha = 60^{\circ}$

Lunghezza aste:

La = 1.50 m

Massa aste per metro:

Ma = 7.00 Kg

Diametro aste:

 φ = 50.00 mm

Avanzamento punta:

 $\delta = 0.15 \text{ m}$

 $N_1 = 25$

Numero di colpi punta:

N= N(15) Relativo ad un avanzamento di 15 cm

VALORE MISURATO:

 $N_2 = 50$

 $N_3 = -$

NSPT = 50 (Rif.)

Osservazioni: Per N2=50 avanzamento di 10 cm

Il direttore del laboratorio (dott.geol. Scappa Alessandro)

PROVA PENETROMETRICA DINAMICA S.P.T.

Certificato nº 646

del 13/02/2017

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17

Procedura di prova: IDL 7A/3 Normativa di riferimento: Racc. AGI 1977

Committente: Comune di Leonessa

Cantiere: studio di vulnerabilità sismica del olesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel nune di Leonessa (RI). Foglio n. 95 - Particelle 270,

Sondaggio: S3

Prova n°: SPT3 Data esec. prova: 01/02/17

Ubicazione sondaggio: lat. 42,5669°; long. 12,9632° (WGS84)

Quota boccaforo: 962 m s.l.m. | Geologo: dott.geol. Scappa Alessandro

Macchina operatrice: Sonda MORI M45

Metodo perforaz.: WIRE - LINE

Diam. perforazione mm: 101

Carotiere: semplice

Profondità esecuzione prova SPT3: 12.00 m

Profondità falda acquifera (m dal p.c.): —

CARATTERISTICHE CAMPIONATORE

Campionatore Raymond:

271, 272, 273

PUNTA APERTA

PUNTA CHIUSA 🔀

Massa battente:

M = 63.50 Kg

Altezza caduta libera:

H = 0.76 m

Diametro punta conica:

D = 51.00 mm

Area base punta conica:

A = 20.43 cmq

Angolo apertura punta:

 $\alpha = 60^{\circ}$

Lunghezza aste:

La = 1.50 m

Massa aste per metro:

Ma = 7.00 Kg

Diametro aste:

 φ = 50.00 mm

Avanzamento punta:

 $\delta = 0.15 \text{ m}$

 $N_1 = 50$

Numero di colpi punta:

N= N(15) Relativo ad un avanzamento di 15 cm

VALORE MISURATO:

 $N_2 = -$

 $N_3 = -$

NSPT = 50 (Rif.)

Osservazioni: Per N1=50 avanzamento di 7 cm

Il direttore del laboratorio (dott.geol. Scappa Alessandro)

PROVA PENETROMETRICA DINAMICA S.P.T.

Certificato nº 647

del 13/02/2017

Verbale di accettazione n° 1 del 26/01/17

Commessa n° 2 del 26/01/17 Procedura di prova: IDL 7A/3 Normativa di riferimento: Racc. AGI 1977

Committente: Comune di Leonessa

Cantiere: studio di vulnerabilità sismica del olesso scolastico dell'Infanzia, Primaria e Secondaria di primo grado e Palestra sito in viale Aldo Moro nel nune di Leonessa (RI). Foglio n. 95 - Particelle 270,

Sondaggio: S3

PUNTA APERTA

Prova n°: **SPT4** Data esec. prova: **01/02/17**

Ubicazione sondaggio: lat. 42,5669°; long. 12,9632° (WGS84)

Quota boccaforo: 962 m s.l.m.

Geologo: dott.geol. Scappa Alessandro

Macchina operatrice: Sonda MORI M45

Massa battente:

Metodo perforaz.: WIRE - LINE

Diam. perforazione mm: 101

Carotiere: semplice

PUNTA CHIUSA 🔀

Profondità esecuzione prova SPT4: 17.00 m

Profondità falda acquifera (m dal p.c.): —

CARATTERISTICHE CAMPIONATORE

Campionatore Raymond:

M = 63.50 Kg

271, 272, 273

Altezza caduta libera: H = 0.76 m

Diametro punta conica: D = 51.00 mm

Area base punta conica: A = 20.43 cmq

Angolo apertura punta: $\alpha = 60^{\circ}$

Lunghezza aste: La = 1.50 m

Massa aste per metro: Ma = 7.00 Kg

 φ = 50.00 mm Diametro aste:

Avanzamento punta: $\delta = 0.15 \text{ m}$

Numero di colpi punta: N= N(15) Relativo ad un avanzamento di 15 cm

VALORE MISURATO: $N_1 = 50$ $N_2 = -$

 $N_3 = -$

NSPT = 50 (Rif.)

Osservazioni: Per N1=50 avanzamento di 3 cm

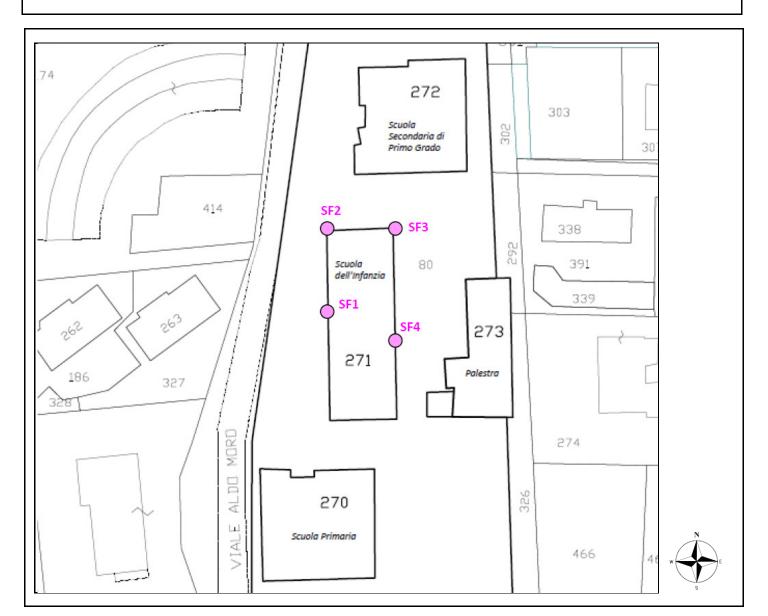
Il direttore del laboratorio (dott.geol. Scappa Alessandro)

Partita IVA / Codice Fiscale e R.I.: 00561630575 • C.C.I.A.A. di Rieti N. 32369 • Sede amministrativa: Via delle Magnolie 3, 02100 RIETI

Dott. Geol. Francesco Chiaretti

Ordine dei Geologi Lazio n. 600 Via delle Fonti, 1 02016 Leonessa (RI)

UBICAZIONE SONDAGGI GEOGNOSTICI A ROTAZIONE E CAROTAGGIO CONTINUO


SF 1-2-3-4

Cantiere: **LEONESSA (RI) – Capoluogo, Via Aldo Moro**

Data: **25 - 26 luglio 2019**

Lavoro: ADEGUAMENTO SISMICO DELLA SCUOLA DELL'INFANZIA (MATERNA) DI LEONESSA SITA NEL CAPOLUOGO, VIA ALDO MORO. Foglio 95, particella 271.

Committente: COMUNE di LEONESSA

SF: Sondaggi geognostici a rotazione e carotaggio continuo eseguiti inclinati di circa 15° sulla base della muratura per accertare la profondità di appoggio delle murature stesse (1 e 4) e dei plinti (2 e 3).

Dott. Geol. Francesco Chiaretti

Ordine dei Geologi Lazio n. 600 Via delle Fonti, 1 02016 Leonessa (RI)

STRATIGRAFIA SONDAGGIO GEOGNOSTICO A ROTAZIONE E CAROTAGGIO CONTINUO

SF 1

Committente: Comune di Leonessa Lavoro : Adeguamento sismico edificio Località : Scuola dell'infanzia (Materna) Geologo: dott. Francesco Chiaretti Perforatore: GeoExploring sri Metodo perf. : Rotazione e carolaggio continuo Descrizione Litologia Descrizione Litologia Descrizione Litologia Paymentazione in dis e massetto del marciapiede perimetrale. 0.40 0.40 0.8		eonessa (RI) - Via Aldo Moro	N. sondaggio: SF 1				
Perforatore: GeoExploring srl Metodo perf.: Rotazione e carotaggio continuo Descrizione Litologia Descrizione Litologia Pavimentazione in cis e massetto del marciapiede perimetrale. Descrizione Litologia Terreno di riporto argilloso detritico di colore marrone. Depositio ciptolose, ghiaices, sabbiose, calcarse in abbondante matrice aggillo-sabbiose asi avana, i classi sono ben arrotondali: eferometrici, con diametri che arrivano a 10 centimetri. A luoghi, sabbie grossolane fortemente addensate e/o cementate in sacche, lenti e livelii. Il limite superiore di tale deposito è ondulato. 3.40 3.40 3.40 3.40			Lavoro : Adeguamento	sism	ico e	<u>dificio</u>	
Metodo perf.: Rotazione è carotaggio continuo Descrizione Littologia Pavimentazione in cis e massetto del marciapiede perimetrale. Pavimentazione in cis e massetto del marciapiede perimetrale. Pavimentazione in cis e massetto del marciapiede perimetrale. O.40 O.50 Terreno di riporto argilloso detritico di colore marrone. Conglomerato cementizio tipo magrone di base muratura. 1.20 O.60 Deposito ciottoloso-ghialoso-sabbioso calcareo in abbondante matrice argillo-sabbioso calcareo in condimenti che argillo-sabbioso calcareo in condimenti che argillo-sabbioso calcareo in abbondante matrice argillo-sabbioso calcareo in condimenti che argillo-sabbioso calcareo in abbondante matrice argillo-sabbioso calcareo in abbondante in saccione del proprio de				Chiai	retti		
Descrizione Litologia Perimentazione in cis e massetto del marciapiede perimetrale. Descrizione Litologia Perimentazione in cis e massetto del marciapiede perimetrale. O.40 961.60 Conglomerato cementizio tipo magrone di base muratura. 1.20 Deposito ciottoloso-ghialoso-sabbioso calcareo in abbondante matrice argillo-sabbiosa avana. I clasti sono bana protosodali, eforemetrica con diametri che arrivano a 10 cantretti. A li imite superiore di tale deposito e ordulatio. 2.5 3.6 3.7 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9	-enoratore: Metodo nerf	Geo⊑xpioring sri C: Rotazione e carotaggio continuo		0 2019)		
Pavimentazione in cis e massetto del marciapiede perimetrale. 0.40 0.40 0.40 0.40 0.80 1.00 Conglomerato cementizio tipo magrone di base muratura. 1.50 Deposito cioticoloso-ghiaioso-sabbicos calcareo in abbondante matrice argilio-sabbicos aa avana. I clasti sono ben arrotondati, eterometrici, con diametri che arrivano a 10 contimetri. A lugorii sabbi geroscine forfemente addenseté e/o cementate in sacche. Ienti e liveiii. Il limite superiore di tale deposito è ondulato. 3.6 3.7 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9		Descrizione				Juota [m slm]	Carotaggio [%]
Terreno di riporto argilloso detritico di colore marrone. 1.0 Conglomerato cementizio tipo magrone di base muratura. 1.5 Deposito ciottoloso-ghialoso sabbioso calcareo in abbondante matrice argillo-sabbiosa avana. I clasti sono ben arrotonotati. eterometrici. con diametri che arriveno a 10 centimetri. A luoghi, sabbie grossolane fortemente addensate e/o cementate in sacche. lenti e livelli. Il limite superiore di tale deposito è ondulato. 3.40 3.40 4.5	×××× ×××× ×××××	Pavimentazione in cls e massetto del marciapiede	perimetrale.				20 40 60
Conglomerato cementizio tipo magrone di base muratura. 1.5 Deposito ciottoloso-ghiaioso-sabbioso calcareo in abbondante matrice argillo-sabbiosa avana. I clasti sono ben arrotondati, eterometric, con diametri che arrivano a 10 centimetri. A luogini, sabbi grasolarie fortemente addensiale e/o cementate in sacche, lenti e livelii. Il limite superiore di tale deposito è ondulato. 2.6 3.40 3.40 3.40	$\begin{array}{c} \times \times$	Terreno di riporto argilloso detritico di colore marro	ne.	0.40		961.60	
Deposito ciottoloso-ghiaioso-sabbioso calcareo in abbondante matrice argililo-sabbiosa avana. I clasti sono ben arrotondati. eterometrici. con diametri che arrivano a 10 centimetri. A luoghi. sabbio grossolane fortemente addensate e/o cementate in sacche. lenti e livelli. Il limite superiore di tale deposito è ondulato. 3.40 3.40 3.40	1.0				0.80		
Deposito ciottoloso-ghiaioso-sabbioso calcareo in abbondante matrice argillo-sabbiosa avana. I clasti sono ben arrotondati, eterometrici, con diametri che arrivano a 10 centimetri. A luoghi, sabbie grossolane fortemente addensate e/o cementate in sacche. Ienti e livelli. Il limite superiore di tale deposito è ondulato. 2.5 3.0 3.40 3.40		Conglomerato cementizio tipo magrone di base mu	ıratura.	1.20	0.40	960.80	
centimetri. A luoghi. sabbie grossolane fortemente addensate e/o cementate in sacche. lenti e livelli. Il limite superiore di tale deposito è ondulato. 2.5 3.0 4.0 4.5	1.5	Deposito ciottoloso-ghiaioso-sabbioso calcareo in a	abbondante matrice argillo-sabbio- ci, con diametri che arrivano a 10	1.60	0.40	960.40	
5.00 957.00	3.5	che. lenti e livelli. Il limite superiore di tale deposito	è ondulato.		3.40		
ondaggio inclinato su base muratura. Falda idrica non rilevata.				1		957.00	

Dott. Geol. Francesco Chiaretti

Ordine dei Geologi Lazio n. 600 Via delle Fonti, 1 02016 Leonessa (RI)

<u>DOCUMENTAZIONE</u> <u>FOTOGRAFICA</u> SONDAGGIO

SF 1

POSTAZIONE SF1

CASSETTA CATALOGATRICE SF1

Ordine dei Geologi Lazio n. 600 Via delle Fonti, 1 02016 Leonessa (RI)

STRATIGRAFIA SONDAGGIO GEOGNOSTICO A ROTAZIONE E CAROTAGGIO CONTINUO

SF 2

	eonessa (RI) - Via Aldo Moro	N. sondaggio: SF 2				
Committente: Comune di Leonessa Lavoro: Adeguamento sismico edificio						
Località : Scuola dell'Infanzia (Materna) Geologo : dott Francesco Chiaretti Perforatore: GeoExploring srl Quota (p.c.): 962 m slm			еш			
Perforatore: GeoExploring srl Quota (p.c.): 962 m slm Metodo perf.: Rotazione e carotaggio continuo Data ultimazione: 25 lug						
Scala 1:25 Stratigrafia	Descrizione Litologia		Profondita' [m]	Potenza [m]	Quota [m slm]	Carotaggio [%]
Sca			Pre	P.	g	20 40 60 80
×××××	Pavimentazione in cls e massetto del marciapiede pe		0.10	0.10	961.90	20 40 00 80
1.5 \(\) \(Terreno di riporto argilloso detritico di colore marrone Cemento armato del plinto di fondazione con spezzun lungo spezzone di tondino all'interno del carotie causato un recupero loimitato).	oni di tondini lisci. (L'incastro di	0.20	1.30	961.80	
2.5 3.0 4.0 4.5	Deposito ciottoloso-ghiaioso-sabbioso calcareo in abl sa (preponderante nei primi 20 centimetri) avana. I ci metrici. con diametri che arrivano a 10 centimetri. A mente addensate e/o cementate in sacche. lenti e liv posito è ondulato.	lasti sono ben arrotondati. etero- luoghi. sabbie grossolane forte-	1.50	3.50	960.50	
5.0			5.00		957.00	
Sondaggio i	nclinato su base muratura/PLINTO.	Falda idrica non rileva	ta.			

Ordine dei Geologi Lazio n. 600 Via delle Fonti, 1 02016 Leonessa (RI)

<u>DOCUMENTAZIONE</u> <u>FOTOGRAFICA</u> SONDAGGIO

SF 2

POSTAZIONE SF2

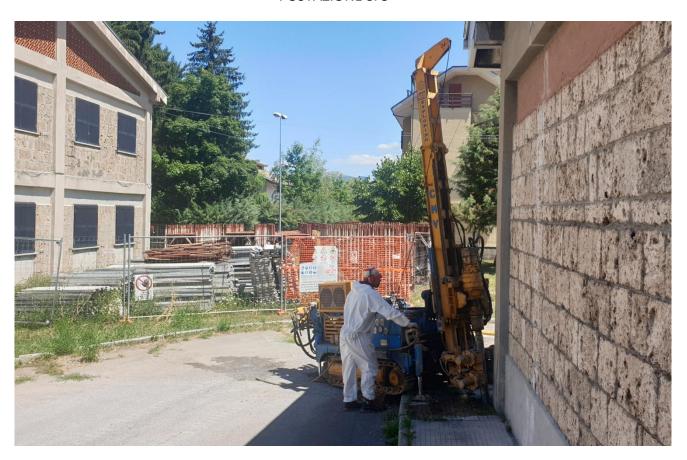
CASSETTA CATALOGATRICE SF2

Ordine dei Geologi Lazio n. 600 Via delle Fonti, 1 02016 Leonessa (RI)

STRATIGRAFIA SONDAGGIO GEOGNOSTICO A ROTAZIONE E CAROTAGGIO CONTINUO

SF₃

		onessa (RI) - Via Aldo Moro	N. sondaggio: SF 3				
		e: Comune di Leonessa	Lavoro : Adeguamento	sism	ico e	dificio	
		uola dell'Infanzia (Materna)	Geologo: dott Francesco Quota (p.c.): 962 m slm	Chiar	еш		
Metoc	do perf	GeoExploring srl : Rotazione e carotaggio continuo	Data ultimazione: 25 luglio	2019			
Scala 1:25	Stratigrafia -	Descrizione Litologia	3	Profondita' [m]	Potenza [m]	Quota [m slm]	Carotaggio [%]
		Terreno di riporto argilloso detritico di colore marrone	·		0.30		20 40 60 80
1.0		Deposito ciottoloso-ghiaioso-sabbioso calcareo in abi sa avana. I clasti sono ben arrotondati, eterometrici centimetri. A luoghi, sabbie grossolane fortemente a che, lenti e livelli. Il limite superiore di tale deposito è	bondante matrice argillo-sabbio-	- 0.30 -	3.40	961.70	
5.0				5.00		957.00	
Sonda	ggio i	nclinato su base muratura/PLINTO.	Falda idrica non rileva	ta.			



Ordine dei Geologi Lazio n. 600 Via delle Fonti, 1 02016 Leonessa (RI)

<u>DOCUMENTAZIONE</u> <u>FOTOGRAFICA</u> SONDAGGIO

SF 3

POSTAZIONE SF3

CASSETTA CATALOGATRICE SF3

Ordine dei Geologi Lazio n. 600 Via delle Fonti, 1 02016 Leonessa (RI)

STRATIGRAFIA SONDAGGIO GEOGNOSTICO A ROTAZIONE E CAROTAGGIO CONTINUO

SF 4

		eonessa (RI) - Via Aldo Moro	N. sondaggio: SF 4				
		e: Comune di Leonessa	Lavoro: Adeguamento Geologo: dott Francesco	sism	ico e	dificio	
		uola dell'Infanzia (Materna)	Quota (p.c.): 962 m slm	Chia	retti		
Meto	oratore:	GeoExploring srl : Rotazione e carotaggio continuo	Data ultimazione: 26 luglio	2019)		
			Data ditimazione. 20 lugito			slm]	[%] o
Scala 1:25	Stratigrafia	Descrizione Litologia		Profondita' [m]	Potenza [m]	Quota [m slm]	Carotaggio [%]
0.5	× × × × × × × × × × × × × × × × × × ×	Pavimentazione in cls e massetto del marciapiede pe	rimetrale.		0.50		20 40 60 80
		Terreno di riporto argilloso detritico di colore marrone.		0.50	0.50	961.50	
1.0		Conglomerato cementizio tipo magrone di base mura	tura.	1.00		961.00	
1.5		Deposito ciottoloso-ghiaioso-sabbioso calcareo in abl	oondante matrice argillo-sabbio-	1.60	0.60	960.40	
2.0		sa avana. I clasti sono ben arrotondati. eterometrici. centimetri. A luoghi. sabbie grossolane fortemente ache. lenti e livelli. Il limite superiore di tale deposito è d	con diametri che arrivano a 10 ddensate e/o cementate in sac-				
2.5							
3.5					3.40		
4.0							
5.0				5.00		957.00	
Sonda	aggio i	nclinato su base muratura.	Falda idrica non rileva	ta.			

Ordine dei Geologi Lazio n. 600 Via delle Fonti, 1 02016 Leonessa (RI)

<u>DOCUMENTAZIONE</u> <u>FOTOGRAFICA</u> SONDAGGIO

SF 4

POSTAZIONE SF4

CASSETTA CATALOGATRICE SF4

Azienda Certificata UNI EN ISO 9001:2008

Certificato n°	86-17	Pag. 1 (di 16 del 15/02	/2017 Accettazione n°	090_17 del 03/02/	/2017
Richiedente :						
Provenienza d Campioni	ei		istico di Leonessa - 2 Campione	Vulnerabilità sismica edifici : 1 Profondità di Preliev	vodam 1,30 am	1,70
		Caratteris	tiche del Camp	ionamento_Cod prova MOL	AB 10622	
Data prelievo d	el campior	ne	31/01/17	Data di consegna del campione	e 02/02/2017	*
Data inizio prov	ra		03/02/2017	Data fine prova	14/02/2017	
Tipo di perforazio	ne (dichiara	ata)	* -1	Forma del Campione	Cilindrica	
Tipo di campiona			EF.	Diametro della Carota cm	8	
Contenitore			Busta in plastica	Lunghezza della Carota cm	38	
Diametro esterno	del conten	itore cm		Classe di Qualità (dichiarata)		
Lunghezza del C	ontenitore o	m	4.0			
ALTO PROVE FISICHE	PROVE MECC		DESCRIZ	IONE DEL CAMPIONE		POCKET (kPa)
5 Wn 10 cm 15 Yn 20 cm 25 Gran 35 LL e LP 40 cm	Tx UU Tx CID Tx CIU	consistent	e a molto consister	ghiaiosa e sabbiosa, mar nte, a struttura nel complesso si. Non reattiva all'acido clori		200
55 BASSO Note: II	contenitor	e era chiuso perimentatore sandro Zonetti	nastro adesivo e pellic	Direttor	re di Laboratorio	End

Azienda Certificata UNI EN ISO 9001:2008

Direttore di Laboratorio Ing. Lanfranco Zonetti

Certificato n° 86-17	Pag. 2 di 16 del 15/02/2	2017 Accettazione n°	090_17 del 03/02/2017	
Richiedente : Comune di Leon	essa	у.		
Provenienza dei Campioni Ple	esso scolastico di Leonessa - \ndaggio: 2 Campione: te :	Vulnerabilità sismica edifici 1 Profondità di Prelievo	odam 1,30 am 1,70	
	Risultato	delle Prove		
		a allo stato naturale) - Cod prova MOLAB 10623		
Data inizio prova	03/02/2017	Data fine prova	06/02/2017	
	Determinazione W₁	Determinazione W ₂	Determinazione W ₃	
Peso lordo umido [g] 103,75 97,53 110,16				
Peso lordo secco [g]	88,54	83,80	94,19	
Tara [g]	34,53	34,27	34,53	
Umidità relativa W [%] 28,16 27,72 26,77				
Umidità Nau	rale Media Wn [%] 27,6	De	eviazione Standard 0,71	
Note:				
	Risultato	delle Prove		
		allo stato naturale) - Cod prova MOLAB IO623		
Data inizio prova	06/02/2017	Data fine prova	06/02/2017	
	Metodo usato	: Fustella Volu	umetrica Tarata	
Peso umido del Terreno [g]	142,29	Volume [cm ²	71,98	
	Peso di Volume Naturale y	n [kN/m³] 19,39		
Note:				
10	10//	\bigcap 1	\mathcal{L}	

Sagedil S.r.I. - Via Giovanni Falcone, 5//c 02032 Passo Corese - Fara Sabina (RI)

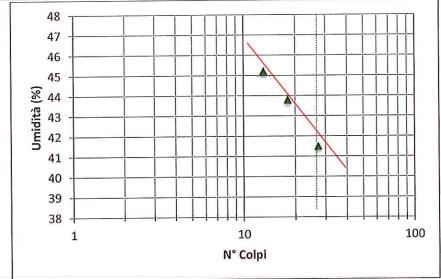
Azienda Certificata UNI EN ISO 9001:2008

laboratono prove materiali		
Certificato n° 86-17 Pag. 3 di 16 del 15/02	/2017 Accettazione n°	090_17 del 03/02/2017
Richiedente : Comune di Leonessa		
Provenienza dei Campioni Plesso scolastico di Leonessa - Sondaggio: 2 Campione Note :	The state of the s	dam 1,30 am 1,70
Risultato	delle Prove	
	a dei granuli solidi 3) - Cod prova MOLAB 10623	
Data inizio prova: 13/02/2017	Data fine	prova: 14/02/2017
Determinazione W ₁	Determinazione N 1	Determinazione N 2
Tara picnometro [g	78,03	78,43
Peso Picnometro + campione secco [ç	93,80	94,67
Peso Picnometro + campione + acqua [s	241,18	240,47
Temperatura Picnometro + campione + acqua[°C	22,00	22,0
Peso Picnometro + acqua [s	231,27	230,28
Temperatura Picnometro + acqua [s	23,00	22,00
Peso di volume dei grani misurato a 20° [kN/m	³] 26,38	26,32
Peso di Volume dei Grani medio ys [kN/m³] 26,35 Note :	De	viazione Standard 0,043
Risultato	delle Prove	
Caratteristiche fisiche e volum	netriche_Cod prova MOLAB IO6	23
Data inizio prove 13/02/2017	Data fin	e prove 14/02/2017
Indice dei vuoti e 0,734	Grado	di saturazione [S _r] 99
Porosità n 0,423	Peso di Volume s	secco γdry [kN/m³] 15,19
Peso di Volume saturo γ _{sat} [kN/m³] 19,35	Peso di Volume	immerso γ [kN/m³] 9,52
Note:		
Lo Sperimentatore Alessandro Zonetti	1 / 11	di Laboratorio

Sagedil S.r.l. - Via Giovanni Falcone, \$1/c

02032 Passo Corese - Fara Sabina (RI) Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

Azienda Certificata UNI EN ISO 9001:2008


Pag. 4 di 16 090_17 03/02/2017 15/02/2017 Accettazione nº 86-17 Certificato nº Richiedente: Comune di Leonessa Plesso scolastico di Leonessa - Vulnerabilità sismica edifici Provenienza dei Campioni 1,70 1 Profondità di Prelievo da m 1,30 a m Campione: Sondaggio: 2 Note:

Risultato delle Prove

Caratteristica di Consistenza o Limiti di Attemberg

(UNICEN ISO/TS 17892-12) - Cod prova MOLAB IO623

Data inizio prova Ll	_e LP		10	/02/2017	Da	ata fine prova LL e LP			13/02/20	17
Data inizio prova Li	₹				Da	ata fine prova LR				
		Lir	nite Liqui	do			Limite	Plastico	Limite	di Ritiro
Misurazioni	1	2	3	4	5	Misurazioni	1	2	1	2
N° colpi	15	20	29			Umidità %	25,6	24,2		
Umidità (%)	45,2	43,8	41,5							

	Limite di liquidità	LL	42	%
	Limite di plasticità	LP	25	%
	Indice di plasticità	IP	17	%
(34) (34)	Limite di ritiro	LR		%
	Contenuto acqua naturale	W _n	27,6	%
	Indice di consistenza	IC	0,84	
	Indice di liquidità	IL		%
	Indice di ritiro	I _r	-	
	Rapporto di ritiro	R _r	7 94 14	
la 1	Indice di attività	Α		

Note:

Sperimentatore

Alessandro Zonetti

Direttore di Laboratorio Ing. Lanfranco Zonetti

Sagedil S.r.l. - Via Giovanni Falcone, 51/6

02032 Passo Corese - Fara Sabina (RI)

Azienda Certificata UNI EN ISO 9001:2008

Certificato nº

86-17

Pag. 5 di 16

03/02/2017

Accettazione nº

090_17

del 03/02/2017

Richiedente :

Comune di Leonessa

Provenienza dei Campioni

Plesso scolastico di Leonessa - Vulnerabilità sismica edifici

Sondaggio: 2 Campione:

Profondità di Prelievo da m

1,30

a m 1,70

Note: /

Risultato delle Prove

Prova di Taglio Diretto (CD)

(UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

Data inizio prova	03/02/2017

Data fine prova	06/02/2017
-----------------	------------

Caratteristiche dei provini sottopo	osti a prova		
Provino	1	2	3
Altezza [cm]	1,990	2,040	2,070
Area [cm²]	36,020	35,990	36,020
Volume [cm ³]	72,00	71,35	71,90
Peso di Volume [kN/m³]	19,52	19,52	19,33
Contenuto d'acqua [%]	27,9	26,8	27,3
Peso di Volume dei grani [kN/m³]	26,35	26,35	26,35
Indice dei vuoti	0,724	0,710	0,739
Grado di saturazione [%]	104	101	99

Fase di Consolidaz	ione		
Provino	1	2	3
Pressione di consolidazione (kPa)	98	196	294
Cedimento (mm)	1,139	1,759	2,221

Fase di taglio		*	
Provino	1	2	3
Velocità di taglio mm/min	0,0048	0,0048	0,0048
Spostamento orizontale a rottura (mm)	4,76	4,13	2,70
Deformazione Verticale a rottura (%)	1,54	2,31	2,70
Contenuto finale d'acqua %	29,1	25,7	26,1
Tensione di taglio a rottura(mm)	73	117	157

Note:

Lo Sper mentatore

Alessandro Zonetto

Direttore di Laboratorio

g, Lanfranco Zonetti

Sagedil S.r.l. - Via Giovanni Falcone, 51/c

02032 Passo Corese - Fara Sabina (RI)

Azienda Certificata UNI EN ISO 9001:2008

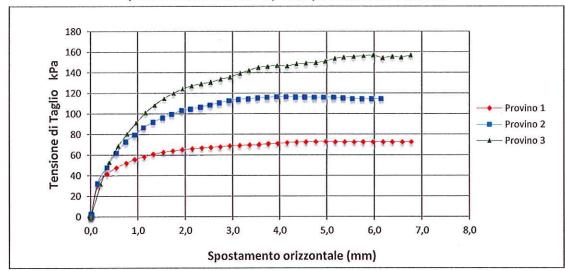
Pag. 6 di 16 03/02/2017 03/02/2017 090_17 Certificato nº 86-17 Accettazione nº Richiedente: Comune di Leonessa

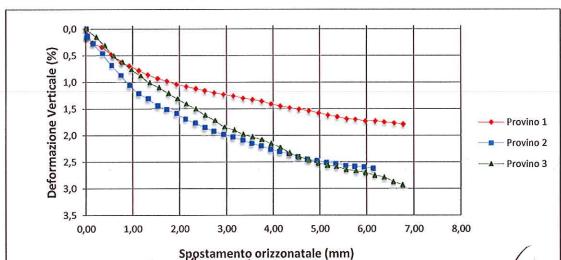
Provenienza dei Campioni Plesso scolastico di Leonessa - Vulnerabilità sismica edifici

Sondaggio: 2

Note:

Campione: 1 Profondità di Prelievo da m


1,30


1,70

Curve Tensione di Taglio - Spostamento e Deformazione verticale- Spostamento

Prova di Taglio Diretto (CD)

(UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

o Sperimentatore

Direttore di Laboratorio

Ing. Lanfranco Zonetti

Sagedil S.r.l. - Via Giovanni Falcone, 51/c

02032 Passo Corese - Fara Sabina (RI)

Azienda Certificata UNI EN ISO 9001:2008

Certificato n° 86-17 Pag. 7 di 16 del 03/02/2017 Accettazione n° 090_17 del 03/02/2017

Richiedente: Comune di Leonessa

Provenienza dei Campioni Plesso scolastico di Leonessa - Vulnerabilità sismica edifici

Sondaggio: 2 Campione: 1 Profondità di Prelievo da m 1,30 a m 1,70

Note:

Risultato delle Prove

Prova di Taglio Diretto (CD)

(UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

Misurazioni Acquisite

	Provino 1			Provino 2			Provino 3	
Spostamento	Deformazione	Tensione	Spostamento orizzontale	Deformazione verticale	Tensione di taglio	Spostamento orizzontale	Deformazione verticale	Tensione di taglio
orizzontale (mm)	verticale (%)	di taglio (kPa)	(mm)	(%)	(kPa)	(mm)	(%)	(kPa)
0,00	0,00	0	0,00	0,00	0	0,00	0,00	0
0,14	0,26	31	0,02	0,13	2	0,21	0,15	32
0,34	0,34	42	0,02	0,14	2	0,39	0,31	53
0,54	0,48	48	0,01	0,16	3	0,58	0,5	69
0,75	0,63	52	0,14	0,27	33	0,77	0,62	81
0,93	0,69	56	0,34	0,46	48	0,96	0,76	91
1,13	0,78	58	0,54	0,68	62	1,16	0,88	101
1,32	0,86	61	0,74	0,87	73	1,35	1,01	109
1,53	0,93	63	0,93	1,06	80	1,55	1,1	115
1,73	0,98	64	1,12	1,21	87	1,75	1,21	120
1,93	1,04	65	1,32	1,31	92	1,94	1,31	124
2,14	1,08	66	1,52	1,44	96	2,13	1,41	127
2,34	1,12	67	1,71	1,51	100	2,33	1,5	129
2,53	1,16	67	1,92	1,59	103	2,53	1,62	131
2,73	1,20	68	2,11	1,69	105	2,74	1,72	134
2,93	1,23	69	2,32	1,77	106	2,94	1,84	136
3,14	1,26	69	2,52	1,85	109	3,15	1,9	139
3,35	1,30	70	2,71	1,92	111	3,34	1,98	142
3,55	1,33	70	2,92	1,98	113	3,54	2,03	145
3,75	1,36	71	3,12	2,03	114	3,74	2,08	146
3,95	1,41	71	3,33	2,09	115	3,94	2,15	147
4,15	1,45	72	3,52	2,15	115	4,15	2,23	146
4,35	1,48	72	3,73	2,2	116	4,35	2,33	148
4,55	1,51	73	3,93	2,26	116	4,55	2,4	149
4,76	1,54	73	4,13	12,31	117	4,76	2,46	150

Lo Sperimentatore

Alessandro Zonetti

Direttore di Laboratorio

Ing. Lanfranco Zonetli

Sagedil S.r.l. - Via Giovanni Falcone, 51/c

02032 Passo Corese - Fara Sabina (RI)

Azienda Certificata UNI EN ISO 9001:2008

Certificato nº	86-17	Pag. 8	di 16	del (03/02/2017	Accettazione n°	090_17	del	03/02	2/2017
Richiedente :	Comune di L	eonessa								
Provenienza dei	Campioni					rabilità sismica edifici Profondità di Preli	evo da m	1 30	a m	1.70
		Sondaggio:	2	Camp	oione: 1	Profondita di Prefi	evo da III	1,30	a III	

Risultato delle Prove

Prova di Taglio Diretto (CD)

(UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

Misurazioni Acquisite

			11110411	azioni Aoqui	1			
	Provino 1			Provino 2			Provino 3	
	Deformazione verticale	Tensione di taglio	Spostamento orizzontale	Deformazione verticale	Tensione di taglio	Spostamento orizzontale	Deformazione verticale	Tensione di taglio
(mm)	(%)	(kPa)	(mm)	(%)	(kPa)	(mm)	(%)	(kPa)
4,97	1,58	73	4,33	2,35	116	4,96	2,52	151
5,17	1,62	73	4,53	2,4	116	5,16	2,56	154
5,37	1,65	73	4,73	2,45	116	5,35	2,59	155
5,57	1,69	73	4,93	2,48	116	5,56	2,64	156
5,76	1,70	73	5,14	2,51	116	5,77	2,67	156
5,97	1,73	73	5,34	2,53	115	5,97	2,7	157
6,18	1,73	73	5,54	2,56	115	6,17	2,75	154
6,37	1,75	73	5,74	2,58	115	6,37	2,79	156
6,58	1,77	73	5,94	2,6	115	6,56	2,87	155
6,77	1,79	73	6,14	2,62	115	6,76	2,93	157
							(77
22			E-8					
22								
			==		22			
				24				
	223							
	¥¥:	2-2	:					
)——					(++
				55 5		,		
1775								(##)
(Alex					155			(***)
æ					255			
		i gu			:			22
					3. 5.5 .0			

o Sperimentatore

Note:

Direttore di Laboratorio

ng. Lanfranco Zonetti

Sagedil S.r.l. - Via Giovanni Falcone, 51/c

02032 Passo Corese - Fara Sabina (RI)

PROVA DI TAGLIO DIRETTO

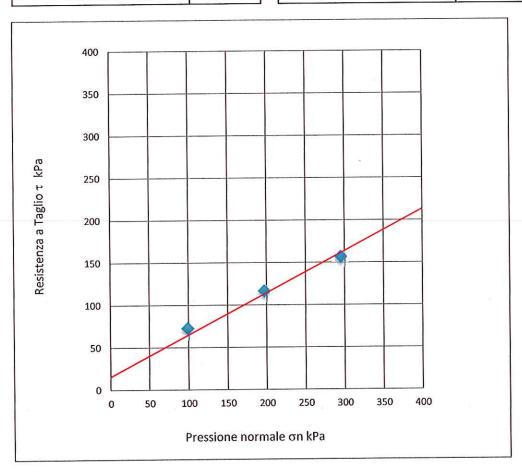
Sondaggio:

2 Campione:

1

Profondità di Prelievo da m

1,30


1,70

Note:

INTERPRETAZIONE DELLA PROVA

	Spostam orizzontale a rottura (mm)	Deformazione Verticale a Rottura (%)	Tensione Normale appplicata (kPa)	Tensione di Taglio a rottura (kPa)
PROVINO 1	4,76	1,54	98,1	73,0
PROVINO 2	4,13	2,31	196,2	116,7
PROVINO 3	5,97	2,70	294,3	156,9

Coesione efficace c' 18 kPa Angolo d'attrito efficace φ' 24°

Azienda Certificata UNI EN ISO 9001:2008

Certificato nº	86-17	Pag. 9 di 16 del 15/02/2	2017 Accettazione n° 090_1	7 del 03/02/2017
Richiedente :				
Provenienza de Campioni		Plesso scolastico di Leonessa - \ Sondaggio: 3 Campione: Note :	/ulnerabilità sismica edifici 1 Profondità di Prelievo da m	2,60 am 3,00
		Caratteristiche del Campi	onamento_Cod prova MOLAB 106	22
Data prelievo de	l campior	ne 01/02/17	Data di consegna del campione	02/02/2017
Data inizio prova		03/02/2017	Data fine prova	14/02/2017
Tipo di perforazion	e (dichiara	ata)	Forma del Campione	Cilindrica
Tipo di campionato			Diametro della Carota cm	8
Contenitore	· ·	Busta in plastica	Lunghezza della Carota cm	37
Diametro esterno	del conten	itore cm	Classe di Qualità (dichiarata)	
Lunghezza del Co	ntenitore o	cm		
ALTO PROVE FISICHE	PROVE MECC	DESCRIZI	ONE DEL CAMPIONE	POCKET (kPa)
5 Wn 10 cm	Tx CID Tx CIU	Argilla limosa debolmente gh consistente, a struttura nel minerali argillosi. Non reattiva	iaiosa e sabbiosa, di colore marro complesso omogenea. Plastica in all'acido cloridico.	one-giallastro , n relazione ai 200
BASSO Note: II o	/Los	perimentatore sandro Zonetti	Direttore di La	, ,,,

Sagedil S.r.I. - Via Giovanni Falcone, 51/c 02032 Passo Corese - Fara Sabina (RI) Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

Azienda Certificata UNI EN ISO 9001:2008

Certificato n° 86-17	Pag. 10 di 16 del 15/02/2	2017 Accettazione n° (090_17 del 03/02/2017
Richiedente : Comune di Leon		5	
	esso scolastico di Leonessa - \ ndaggio: 3 Campione: te :	/ulnerabilità sismica edifici 1 Profondità di Prelievo	dam 2,60 am 3,00
	Risultato	delle Prove	
		a allo stato naturale - Cod prova MOLAB 10623	
Data inizio prova	03/02/2017	Data fine prova	06/02/2017
	Determinazione W ₁	Determinazione W ₂	Determinazione W ₃
Peso lordo umido [g]	107,49	95,64	92,55
Peso lordo secco [g]	93,34	83,75	80,82
Tara [g]	34,92	34,69	34,61
Umidità relativa W [%]	24,22	24,24	25,38
Umidità Naur	ale Media Wn [%] 24,6	Dev	viazione Standard 0,67
Note:			
	Risultato	delle Prove	
3		allo stato naturale) - Cod prova MOLAB IO623	
Data inizio prova	06/02/2017	Data fine prova	06/02/2017
	Metodo usato	: Fustella Volui	metrica Tarata
Peso umido del Terreno [g]	149,40	Volume [cm³]	71,98
	Peso di Volume Naturale y	n [kN/m³] 20,36	e .
Note:		:	
Lo Sperim Alessandro			di Laboratorio franco Zonetti

Sagedil S.r.I. - Via Giovanni Falcone 51/c

02032 Passo Corese - Fara Sabina (RI)

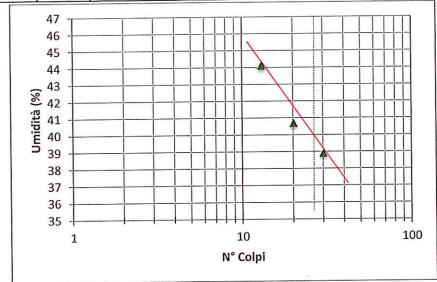
Azienda Certificata UNI EN ISO 9001:2008

iaboratorio prove materiali			02/02/2017
Octanioaco II	el 15/02/2	017 Accettazione n° (090_17 del 03/02/2017
Richiedente : Comune di Leonessa			
	eonessa - V Campione:	/ulnerabilità sismica edifici 1 Profondità di Prelievo	dam 2,60 am 3,00
Ri	isultato d	delle Prove	
		dei granuli solidi - Cod prova MOLAB 10623	
Data inizio prova: 13/02/2	2017	Data fine	prova: 14/02/2017
Determinazion	ne W ₁	Determinazione N 1	Determinazione N 2
Tara picr	nometro [g]	76,89	81,59
Peso Picnometro + campion	e secco [g]	94,69	97,37
Peso Picnometro + campione +	Same 16	239,32	242,39
Temperatura Picnometro + campione +		22.00	22,0
Peso Picnometro		220.46	232,49
Temperatura Picnometro		22.00	22,00
Peso di volume dei grani misurato a 2		00.00	26,32
Peso di Volume dei Grani medio ys [kN/m³]	26,30	Dev	viazione Standard 0,020
Note:			
R	isultato	delle Prove	
Caratteristiche fisich	e e volume	etriche_Cod prova MOLAB IO62	23
Data inizio prove 13/02	2017	Data fine	e prove 14/02/2017
Indice dei vuoti e	0,618	Grado	di saturazione [S _r] 108
Porosità n	0,382	Peso di Volume s	secco γdry [kN/m³] 16,26
Peso di Volume saturo γ _{sat} [kN/m³]	20,00	Peso di Volume i	mmerso γ [kN/m³] 10,50
Note:			
Lo Sperimentatore		Direttore	di Laboratorio

Sagedil S.r.l. - Via Giovanni Falcone, 51/c

02032 Passo Corese - Fara Sabina (RI) Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

Azienda Certificata UNI EN ISO 9001:2008


03/02/2017 090_17 del Pag. 12 di 16 15/02/2017 Accettazione nº 86-17 del Certificato nº Richiedente: Comune di Leonessa Provenienza dei Campioni Plesso scolastico di Leonessa - Vulnerabilità sismica edifici 3,00 2,60 Profondità di Prelievo da m Campione: 1 Sondaggio: 3 Note:

Risultato delle Prove

Caratteristica di Consistenza o Limiti di Attemberg

(UNICEN ISO/TS 17892-12) - Cod prova MOLAB IO623

Data inizio prova L	L e LP		13	/02/2017	[Data fine prova LL e LP			14/02/20	17
Data inizio prova L						Data fine prova LR				
		Lir	nite Liquid	do			Limite I	Plastico	Limite	di Ritiro
Misurazioni	1	2	3	4	5	Misurazioni	1	2	1	2
N° colpi	15	22	32			Umidità %	24,3	25,6		
Umidità (%)	44,1	40,7	38,9							

Limite di liquidità	LL	40	%
Limite di plasticità	LP	25	%
Indice di plasticità	IP	15	%
Limite di ritiro	LR		%
Contenuto acqua naturale	W _n	24,6	%
Indice di consistenza	IC	1,02	
Indice di liquidità	IL	<0	%
Indice di ritiro	l _r		
Rapporto di ritiro	R_r		
Indice di attività	Α		

Note:

o Sperimentatore

Alessandro Zonetti

Direttore di Laboratorio

Ing. Lanfranco Zonetti

Sagedil S.r.l. - Via Giovanni Falcone, 51/c

02032 Passo Corese - Fara Sabina (RI)

Azienda Certificata UNI EN ISO 9001:2008

Certificato nº

86-17

Pag. 13 di 16

15/02/2017

Accettazione nº

090_17

0,604

109

0,610

106

03/02/2017

Richiedente:

Comune di Leonessa

Provenienza dei Campioni

Plesso scolastico di Leonessa - Vulnerabilità sismica edifici

Sondaggio: 3

Campione:

Profondità di Prelievo da m

3,00 a m

08/02/2017

0,624

109

Note: /

Risultato delle Prove

1

Prova di Taglio Diretto (CD)

(UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

Data inizio prova	06/02/2017			Data fine prova	08/02/20
	Caratte	ristiche dei provini sottopo	osti a prova	a	
9		Provino	1	2	3
		Altezza [cm]	1,990	2,040	2,070
		Area [cm ²]	36,020	35,990	36,020
		Volume [cm ³]	72,00	71,35	71,90
		Peso di Volume [kN/m³]	20,31	20,40	20,31
		Contenuto d'acqua [%]	24,1	24,6	25,3
	Peso d	i Volume dei grani [kN/m³]	26,30	26,30	26,30
		<u> </u>	591 0000000	222 323273	

Fase di Consolidazi	one		
Provino	1	2	3
Pressione di consolidazione (kPa)	98	196	294
Cedimento (mm)	1,166	1,463	1,657

Indice dei vuoti

Grado di saturazione [%]

Fase di taglio			
Provino	1	2	3
Velocità di taglio mm/min	0,0048	0,0048	0,0048
Spostamento orizontale a rottura (mm)	4,00	5,91	0,91
Deformazione Verticale a rottura (%)	1,18	1,88	0,91
Contenuto finale d'acqua %	24,4	24,1	23,8
Tensione di taglio a rottura(mm)	98	144	197

Note:

o Sperimentatore

Alessand o Zonetti

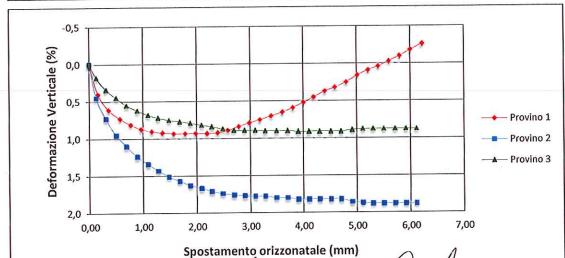
Direttore di Laboratorio

Ing. Lanfranco Zonet

Sagedil S.r.l. -Via Giovanni Falcone, 5/1/c

02032 Passo Corese - Fara Sabina (RI)




Azienda Certificata UNI EN ISO 9001:2008

03/02/2017 090_17 Pag. 14 di 16 15/02/2017 Accettazione nº 86-17 Certificato nº Richiedente: Comune di Leonessa Plesso scolastico di Leonessa - Vulnerabilità sismica edifici Provenienza dei Campioni 3,00 Profondità di Prelievo da m 2,60 Campione: Sondaggio: 3 Note:

Curve Tensione di Taglio - Spostamento e Deformazione verticale- Spostamento

Prova di Taglio Diretto (CD) (UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

o Sperimentatore

Direttore di Laboratorio

,

Azienda Certificata UNI EN ISO 9001:2008

Certificato n° 86-17 Pag. 15 di 16 del 15/02/2017 Accettazione n° 090_17 del 03/02/2017

Richiedente: Comune di Leonessa

Provenienza dei Campioni Plesso scolastico di Leonessa - Vulnerabilità sismica edifici

Sondaggio: 3 Campione: 1 Profondità di Prelievo da m 2,60 a m 3,00

Note:

Risultato delle Prove

Prova di Taglio Diretto (CD)

(UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

Misurazioni Acquisite

					24(0) (0)(1)			
	Provino 1			Provino 2			Provino 3	
Spostamento orizzontale	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)
(mm) 0,00	0,00	0	0,00	0,00	0	0,00	0,00	0
0,16	0,40	31	0,13	0,45	40	0,13	0,18	63
0,36	0,61	48	0,31	0,73	64	0,31	0,34	96
0,57	0,73	59	0,50	0,95	81	0,50	0,45	118
0,77	0,81	67	0,69	1,1	93	0,69	0,55	131
0,96	0,87	72	0,89	1,24	103	0,89	0,62	142
1,16	0,90	77	1,09	1,34	110	1,09	0,68	150
1,36	0,92	81	1,28	1,43	116	1,28	0,72	157
1,57	0,93	84	1,48	1,51	121	1,48	0,75	161
1,78	0,93	87	1,68	1,57	125	1,68	0,77	165
1,98	0,93	89	1,88	1,63	128	1,88	0,79	168
2,19	0,93	90	2,09	1,67	131	2,09	0,82	172
2,39	0,92	92	2,28	1,71	133	2,28	0,84	175
2,58	0,89	93	2,48	1,74	135	2,48	0,87	177
2,78	0,84	95	2,69	1,76	136	2,69	0,89	180
2,98	0,79	95	2,89	1,77	138	2,89	0,89	183
3,18	0,75	96	3,09	1,78	138	3,09	0,89	185
3,39	0,70	96	3,28	1,78	139	3,28	0,9	187
3,60	0,65	97	3,49	1,8	139	3,49	0,9	190
3,80	0,59	97	3,70	1,8	140	3,70	0,9	193
4,00	0,52	98	3,90	1,82	140	3,90	0,91	195
4,19	0,45	98	4,10	1,82	140	4,10	0,91	196
4,40	0,37	98	4,30	1,82	141	4,30	0,91	197
4,59	0,32	98	4,51	1,82	141	4,51	0,91	197
4,80	0,25	98	1 4,70	/ 1,82	141 /	4,70	0,91	196

o Sperimentatore

Direttore di Laboratorio

Ing. Lanfranco Zonetti

Sagedil S.r.l. - Via Giovanni Falcone, 51/c

02032 Passo Corese - Fara Sabina (RI)

Azienda Certificata UNI EN ISO 9001:2008

03/02/2017 Pag. 16 di 16 15/02/2017 Accettazione nº 090_17 86-17 Certificato nº Richiedente: Comune di Leonessa

Plesso scolastico di Leonessa - Vulnerabilità sismica edifici Provenienza dei Campioni

Sondaggio: 3 Campione: 1

Profondità di Prelievo da m

2,60 3,00 a m

Note:

Risultato delle Prove

Prova di Taglio Diretto (CD)

(UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

Misurazioni Acquisite

			Milour	azioiii Acqui			-	
	Provino 1			Provino 2			Provino 3	
Spostamento	Deformazione	Tensione	Spostamento	Deformazione	Tensione	Spostamento	Deformazione	Tensione
orizzontale	verticale	di taglio	orizzontale	verticale	di taglio	orizzontale	verticale	di taglio
(mm)	(%)	(kPa)	(mm)	(%)	(kPa)	(mm)	(%)	(kPa)
5,01	0,16	97	4,91	1,86	141	4,91	0,89	195
5,21	0,09	97	5,11	1,87	142	5,11	0,88	195
5,40	0,04	97	5,30	1,88	142	5,30	0,88	194
5,60	-0,03	97	5,50	1,88	143	5,50	0,88	194
5,80	-0,10	97	5,71	1,88	143	5,71	0,88	194
6,00	-0,18	97	5,91	1,88	144	5,91	0,88	194
6,21	-0,26	96	6,11	1,88	143	6,11	0,88	191
2 2					44			
	I.E.T.	77.	iee		골골	(Fig. 1)		
(44)			(44)		221		122	
		 2	v ed a		94	W.F.		
		==)	UEE.)					
						<u>1712</u> 0.		
			8.6 .2		-	==		22
			==:				122	44
			W-M-1	1.55		F-		
	a.					J #8		
	(24)							
							(++)	
	,==				1 ==			
	Y2527			()				
	1 #2/		22	(==)			7.5	
17								
				-4:			==.	16.6
5=								

o Sperimentatores

Direttore di Laboratorio

Ing. Lanfranco Zorretti

Sagedil S.r.l. - Via Giovanni Falcone, 61/c

02032 Passo Corese - Fara Sabina (RI)

PROVA DI TAGLIO DIRETTO

Sondaggio:

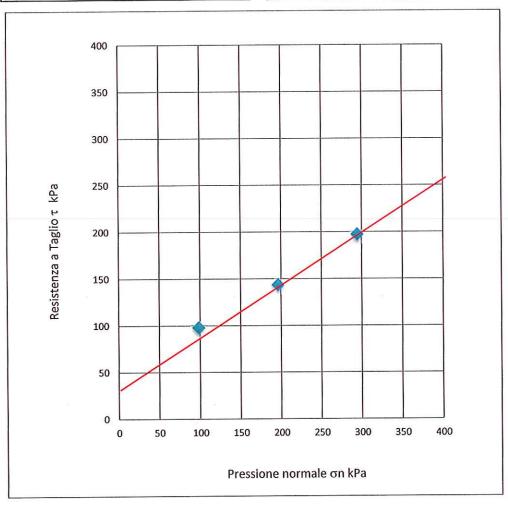
3

Campione:

1

Profondità di Prelievo da m

2,60


a m 3,00

Note:

INTERPRETAZIONE DELLA PROVA

	Spostam orizzontale a rottura (mm)	Deformazione Verticale a Rottura (%)	Tensione Normale appplicata (kPa)	Tensione di Taglio a rottura (kPa)
PROVINO 1	4,00	1,18	98,1	98,0
PROVINO 2	5,91	1,88	196,2	143,7
PROVINO 3	4,51	0,91	294,3	197,2

Coesione efficace c' 28 kPa Angolo d'attrito efficace ф' 27°

Programma di calcolo SPTWIN della GeoSoft – Applicazioni di Geomeccanica

Le elaborazioni delle prove SPT in foro di sondaggio sono state eseguite con il Programma di calcolo SPTWIN della GeoSoft – Applicazioni di Geomeccanica.

Le prove penetrometriche dinamiche SPT (Standard Penetration Test) eseguite in foro di sondaggio nel corso dell'esecuzione dello stesso sono uno dei sistemi più usati di valutazione delle caratteristiche geotecniche in sito dei terreni, (soprattutto nel caso di terreni incoerenti e con molta cautela per i terreni coesivi), abbinando all'economicità della prova la velocità di esecuzione.

SPTWIN è un semplice programma di calcolo che consente di analizzare i risultati di tali prove ricavando, da correlazioni stabilite in letteratura e riportate in Bibliografia, i principali parametri geotecnici del terreno attraversato:

Controllo della granulometria del terreno
Correzione di Bazaraa
Angolo d'attrito
Coesione
Densità relativa
Modulo di deformabilità
Modulo di taglio
Modulo di Winkler
Velocità delle Onde di taglio

I dati richiesti sono quelli misurati nel corso della prova, e cioè profondità di prova, profondità dell'eventuale falda, numero di colpi per l'affondamento dei primi 15 cm. (n1), numero di colpi per l'affondamento dei secondi 15 cm. (n2) e numero di colpi per l'affondamento degli ultimi 15 cm (n3).

Il programma permette di identificare la natura del terreno incontrata nel sondaggio alla profondità di prova così come riscontrata dall'esame delle carote.

Il programma consente di determinare la natura del terreno teorica applicando il criterio di Schmertmann ed il valore di N (espresso come n2+n3) già corretto secondo il metodo di Bazaraa.

Il programma, quindi, consente di calcolare i principali parametri geotecnici, riportati di seguito:

Questi sono, se il terreno è incoerente:

- Angolo di attrito
- Densità relativa
- · Modulo di deformabilità
- Modulo di taglio
- · Modulo di Winkler
- Velocità onde di taglio

Se invece il terreno ha caratteristiche prettamente coesive:

- Coesione non drenata
- · Modulo di deformabilità
- Modulo di taglio
- Modulo di Winkler
- Velocità Onde di taglio

Ai singoli parametri vengono assegnati i valori corrispondenti alle varie correlazioni pertinenti e più qualificate esistenti in Letteratura.

Per ogni parametro viene calcolato anche il valore medio fra tutte le correlazioni applicate.

Controllo della granulometria del terreno - Criterio di Schmertmann

Partendo da un approccio teorico, Schmertmann è pervenuto a dei valori teorici dei rapporti n1/n3 e n2/n3 che sono poi stati messi a confronto con valori ottenuti da risultati sperimentali, giungendo alla conclusione che tali valori variano con regolarità in funzione della natura del terreno, in particolare con valori sempre più elevati all'aumentare della granulometria.

A grandi linee, Schmertmann ha ottenuto i seguenti valori:

sabbie $n1/n3 = 0,61-0,68$	n2/n3 = 0,80-0,84
----------------------------	-------------------

limi argillosi n1/n3 = 0,30-0,50 n2/n3 = 0,75-0,75

argille n1/n3 = 0.00-0.42 n2/n3 = 0.40-0.71

Si può quindi avere un controllo dell'attendibilità della prova confrontando il litotipo derivante dal controllo di Schmertmann con il litotipo effettivamente riscontrato nel sondaggio alla profondità a cui si è eseguita la prova.

Correzione di Bazaraa

I valori misurati nel corso della prova devono essere corretti per tenere conto dell'effetto del carico litostatico agente con la profondità.

A tale fine il programma utilizza la formula di Bazaraa:

$$N' = (4 * N)/(3, 25 + 0, 01 * s)$$

dove:

N = numero dei colpi misurato

N' = numero dei colpi corretto

s = pressione litostatica effettiva alla quota a cui è misurato N

La correzione risulta operante allorché "s" supera i 75 KPa.

Per il calcolo della pressione citostatica effettiva, il programma stima automaticamente il valore del peso di volume del terreno applicando una legge di regressione polinomiale del tipo:

$$y = 1,396 + 0,053N - 0,0011N^2 + 0,0000076N^3$$

Angolo di attrito "Φ (°)"

L'angolo d'attrito viene valutato mediante le seguenti relazioni:

Relazioni del Road Bridge Specification e del Japanese National Railway, note come relazioni di Shioi e Fukuni:

$$\Phi = \sqrt{15N} + 15 \qquad \text{per N<10 colpi}$$

$$\Phi = 0, 3 * N + 27$$
 per N>10 colpi

Tali formule hanno dimostrato un'ottima correlazione con i grafici proposti da De Mello.

Relazione di De Mello

$$\Phi = \tan^{-1}(0.21 + 0.63 * \log(N / s'))$$

s' = pressione efficace in kg/cmq.

La relazione è valida per le sabbie in genere e per qualunque profondità (tranne che per i primi 2 m sotto il p.c.). Per valori di Φ superiori a 38° é da considerarsi inattendibile.

Relazione di Owasaki & Iwasaki

$$\Phi = \sqrt{20N + 15}$$

Il metodo è valido per sabbie da medie a grossolane fino a debolmente ghiaiose e trova le sue condizioni ottimali di applicabilità per profondità di prova superiori a circa 8 - 10 m per terreni sopra falda e superiori a circa 15 m per terreni in falda (pressione efficace superiore a 15 - 20 t/mq).

Relazione di Sowers

$$\Phi = 28.3 + 0.27 * N$$

Il metodo è valido per le sabbie in genere e trova le sue condizioni ottimali di applicabilità per profondità di prova inferiori a circa 4 m per terreni sopra falda e inferiori a circa 7 m per terreni in falda (pressione efficace inferiore a 5 - 8 t/mq).

Relazione di Malcev

$$\Phi = C + 4 * ln(N)$$

con:

$$C = 18.9 - 5.3 * ln(s')$$

s' = pressione efficace in kg/cmq

La relazione è valida per le sabbie in genere e per qualunque profondità (tranne che per i primi 2 m sotto il p.c.). È da considerarsi inattendibile per valori di f superiori a 38°.

Relazione di Peck, Hanson & Thornburn

$$\Phi = 21.2 + 2.7 * \sqrt{N}$$

Il metodo è valido per le sabbie in genere e trova le sue condizioni ottimali di applicabilità per:

profondità di prova inferiori a circa 5 m, per terreni sopra falda

profondità inferiori a 8 m per terreni in falda (pressione efficace inferiore a 8 - 10 t/mq).

Relazione di Meyerhof

$$\Phi$$
 = 19.8 + 4.38 * ln(N) per sabbia fine e/o limosa

$$\Phi$$
 = 25.2 + 4.28 * In(N) per sabbia media e grossa

Il metodo è valido per le sabbie in genere. Trova le sue condizioni ottimali di applicabilità per:

profondità inferiori a 5 m e 3 m nel caso di terreni sopra falda

profondità inferiori a 8 m e 5 m per terreni sotto falda (pressione efficace inferiore a 5 - 8 t/mq).

Coesione non drenata "Cu"

La coesione non drenata viene calcolata dal valore di N con il metodo di **Terzaghi-Peck** ed i metodi del **"Design Manual for Soil Mechanics" (DM)** dopo conversione in formule interpolative dei grafici riportati in letteratura ed illustranti le correlazioni.

I metodi DM sono più calibrati rispetto alle indicazioni di Terzaghi in quanto distinguono fra argille limose e argille di bassa plasticità, argille di media plasticità ed argille di alta plasticità.

Relazione di Terzaghi

$$Cu (kg/cm^2) = 0.067 N_{SPT}$$

Il metodo è valido per argille di media plasticità.

DM (Design Manual for Soil Mechanichs)

Cu
$$(kg/cm^2)$$
 = 0.038N_{SPT} (argille a bassa plasticità)

Cu
$$(kg/cm^2)$$
 = 0.074N_{SPT} (argille a media plasticità)

Cu
$$(kg/cm^2)$$
 = 0,125N_{SPT} (argille ad alta plasticità)

Il metodo è valido per le argille in genere.

Metodo di Sanglerat:

$$Cu = N/(25,5-0,53*N)$$

Cu
$$(kg/cm^2)$$
 = 0,125N_{SPT} (argille a media plasticità)

$$Cu (kg/cm^2) = 0.100N_{SPT} (argille limose)$$

Cu
$$(kg/cm^2)$$
 = 0,067N_{SPT} (argille limo-sabbiose)

Il metodo è valido per le argille di media e bassa plasticità.

Densità relativa "Dr (%)"

I metodi di seguito esposti sono applicabili solo nel caso di terreni prevalentemente sabbiosi; in presenza di depositi ghiaiosi si ottengono valori eccessivamente elevati.

Inoltre i metodi proposti sono validi solo per terreni normalmente consolidati.

L'associazione dei valori di Dr ai vari stati di addensamento, dovuta a Gibson e Holtz, è la seguente:

N	Grado di addensamento
<4	molto sciolto
4 - 10	sciolto
10 - 30	medio
30 - 50	denso
>50	molto addensato

Relazione di Schultze-Menzenbach

$$Dr = 0,478 * ln(N) - 0,262 * ln(s) + 2,84$$

Relazione di Gibbs & Holtz

Dr = 21
$$\sqrt{N/(s'+0.7)}$$

con s' = pressione efficace in Kg/cmq

Il metodo è valido per le sabbie da fini a grossolane pulite, per qualunque valore di pressione efficace, in depositi normalmente consolidati. Nel caso di depositi ghiaiosi il valore di Dr viene sovrastimato, nel caso di depositi limosi viene sottostimato.

Relazione di Bazaraa

Dr =
$$\sqrt{N / [20(a + b * s')]}$$

con s' = pressione efficace in Kg/cmq

I coefficienti a e b prendono rispettivamente i valori di 1 e 2 se s' è inferiore a 0, 5; di 3,25 e 0,5 se s' è superiore a 0, 5.

Il metodo è valido per le sabbie da fini a ghiaiose, per qualunque valore di pressione efficace, in depositi normalmente consolidati.

Relazione di Skempton

Dr =
$$\sqrt{N/(32 + 0.288s')}$$

con s' = pressione efficace in kPa

Il metodo è valido per le sabbie da fini a grossolane, per qualunque valore di pressione efficace, in depositi normalmente consolidati. Nel caso di depositi ghiaiosi il valore di Dr viene sovrastimato, nei depositi limosi viene sottostimato.

Relazione di Marcuson - Bieganousky

$$Dr = 11.7 + 0.76 \sqrt{222N} + 1600 - 475 * s'$$

Relazione di Fardis - Veneziano

$$Dr = exp [(ln(N) - 2.67 - 0.442 * ln(s')) / 2.06]$$

Modulo di deformabilità "Ed"

E' il valore del modulo da introdurre nel calcolo dei cedimenti di fondazioni su terreno granulare, secondo le teorie dell'elasticità.

Per il calcolo del modulo di deformazione degli strati incoerenti si utilizzano:

Relazione di Denver

Ed (MPa) = 7,14 *
$$\sqrt{N}$$

che ha dimostrato buona correlazione con i risultati di prove pressiometriche.

La relazione di Denver va considerata inattendibile per valori di N molto bassi o molto alti. Nel primo caso Ed risulta eccessivamente elevato, nel secondo caso eccessivamente basso.

Relazione di Schmertmann

$$Ed(t/mq) = 2 * B * N$$

con B = costante pari a 4 per sabbie limose, 6 per sabbie pulite, 10 per sabbie + ghiaie; il valore assunto nel programma è 6.

Il metodo è valido per le sabbie in genere. La relazione non considera l'influenza della pressione efficace che porta, a parità di N, ad una diminuzione di Ed con la profondità. Il metodo di Schmertmann è stato derivato da prove penetrometriche statiche.

Relazione di D'Apollonia

$$Ed(MPa) = 7,46 + 0,517 * N$$

La relazione di D'Apollonia, in generale la più attendibile, è stata calibrata su materiali prevalentemente sabbiosi e quindi va usata con prudenza nel caso di terreni limosi o ghiaiosi.

Relazione di Schultze - Menzenbach

$$Ed(Kg/cmq) = 43 + 7.5 * N$$

I due metodi sono validi per sabbie + ghiaie, sabbie pulite e sabbie debolmente limose. Anche in questi due casi le relazioni non considerano l'influenza della pressione efficace che porta, a parità di N, ad una diminuzione di Ed con la profondità.

$$Ed(Kg/cmq) = C1 + C2 *N$$

I parametri C1 e di C2 sono funzione della granulometria e prendono i seguenti valori:

Litologia	C1	C2	R
Sabbie e ghiaie	38	10,4	0,78
Sabbie ghiaiose	43	11,8	0,89
Sabbie	39	4,5	0,95
Sabbie fini	52	3,3	0,76
Sabbie limose	24	5,3	0,76
Limi e limi sabbiosi	12	5,8	0,90
Limi argillosi	4	11,5	0,92

R è il coefficiente di correlazione trovato dagli Autori nello stabilire le correlazioni.

Anche in questo caso la relazione non considera l'influenza della pressione efficace che porta, a parità di N, ad una diminuzione di Ed con la profondità.

Per terreno coesivo viene applicata la formula proposta da Sanglerat:

$$E = 10^{(1.163 - 0.029*N)*N}$$

Modulo di taglio "G"

Il valore del modulo di taglio è di particolare importanza qualora si vogliano eseguire analisi agli Elementi Finiti dell'interazione terreno - fondazione. Vista però la forte dispersione dei dati, i metodi va applicati solo per stime di primo riferimento.

Ricordiamo inoltre che dal modulo di taglio si può risalire al modulo elastico, o modulo di Young, dalla:

$$E = 2 * /(1 + v) * G$$

dove ν indica il valore del modulo di Poisson del terreno.

Relazione di Yoshida

Relazione di Ohsaki & Iwasaki

$$G(t/mq) = a * N^b$$

con:

a = costante uguale a 650 per sabbie pulite e 1182 per sabbie con fine plastico.

b = 0.94 per sabbie pulite e 0.76 per sabbie con fine plastico.

Relazione di Sherif & Ishibashi

G(psi) = 112 *
$$\Phi$$
 * $\sqrt{\sigma}$

con:

Φ = angolo di resistenza al taglio

 σ = pressione efficace in psi (1 psi = 0.07 Kg/cmq)

Il metodo è valido per tutti i terreni di tipo incoerente.

Relazione di Ohta e Goto

$$G(KPa) = (Vs * Vs * g) / 9,81$$

con:

g = peso di volume del terreno (t/mc)

$$Vs = 55 * N^{0, 25} * \sigma^{0.14}$$

Il metodo è ritenuto generalmente valido per sabbie pulite di recente deposizione.

Modulo di Winkler

Il modulo, o più propriamente, **coefficiente di Winkler** è uno dei parametri fondamentali per analisi in campo elastico.

Nel programma questo è calcolato derivando dai grafici di Terzaghi le sue espressioni analitiche secondo le formule per terreni incoerenti:

k = N/(-0,0084 * N + 5,07) per terreni sotto falda

k = N/(-0, 155 * N + 9, 86) per terreni sopra falda

Velocità delle Onde di Taglio "Vs (m/sec)"

Il programma consente di calcolare il valore della velocità delle Onde di Taglio mediante la correlazione con le formule di Muzzi (1984) e di Lee (1990).

Tali valori vengono elaborati e utilizzati qualora manchino dati di Vs più specifici e dettagliati derivanti da altre indagini più appropriate.

Non sempre, quindi, tale valore è riportato nelle elaborazioni delle prove SPT.

Relazione di Muzzi

$$Vs = \alpha N_{SPT}^{\beta}$$

Litologia - Coefficiente	α	β
Sabbie	80.6	0.331
Argille	102	0.292

La relazione di Muzzi è riferita a terreni italiani.

Relazione di Lee

$$Vs = \alpha N_{SPT}^{\beta}$$

Litologia - Coefficiente	α	β
Sabbie	57.4	0.49
Limi	105.6	0.32
Argille	114.4	0.31

Bibliografia

- -) Battaglia Jamiolkowsi: Analisi delle deformazioni XIII Conf. Geotecnica, 1987
- -) Bowles: Foundation analysis and design McGraw Hill, 1988
- -) Cestari: Prove geotecniche in sito, Zanichelli, 1990
- -) Denver: Modulus of elsticity for sand from SPT and CPT tests II ESOPT, 1982
- -) Fardis Veneziano: Estimation of SPT N and relative density ASCE, GT10, 1981
- -) Lancellotta: Geotecnica Zanichelli, 1987
- -) Ohta Goto: Empirical shear wawe velocity equations in terms of characteristics soil indexes Earthquakes Engineering, vol. 6, 1978
- -) Ricceri: Elementi di tecnica delle fondazioni Patron, 1983
- -) Shioi Fukuni: Application of N values to design of foundations II ESOPT, 1982
- -) Terzaghi: Theoretical soil mechanics Wiley, 1943
- -) Trofimenkov: Penetration testing in URSS II ESOPT, 1982
- -) Yoshida: Empirical formulas of SPT blow counts in gravelly soils ISOPT1, 1988

COMUNE DI LEONESSA

PROVINCIA DI RIETI REGIONE LAZIO

Plesso Scolastico di Leonessa

Scuole dell'Infanzia, Primaria e Secondaria di Primo Grado e Palestra

Adeguamento sismico Scuola dell'Infanzia (Materna)

Prove in foro down-hole (DH) e prospezioni sismiche MASW

Committente: COMUNE di LEONESSA

22/02/2017

Dott. Geol. Francesco Chiaretti

GEOLOGO
Dott.
FRANCESCO
CHIARETT
Geologo
A.P. n. 600

INDICE

INDICE	2
PREMESSA	3
UBICAZIONE DELLE PROVE DOWN-HOLE E MASW	4
PROVE DOWN-HOLE: METODOLOGIA E RISULTATI DELL'INDAGINE	5
STRUMENTAZIONI UTILIZZATE E MODALITÀ OPERATIVE	11
DOWN-HOLE DH EFFETTUATE NEL FORO DI SONDAGGIO S1 ed S2	13
PROSPEZIONE SISMICA MASW	28
STRUMENTAZIONI UTILIZZATE E MODALITÀ OPERATIVE	30
PROFILO VERTICALE M.A.S.W. M1	32
PROFILO VERTICALE M.A.S.W. M2	35
PROFILO VERTICALE M.A.S.W. M3	38

PREMESSA

All'interno del Plesso Scolastico di Leonessa (RI), comprendente la Scuola dell'Infanzia, la Primaria, la Secondaria di Primo Grado e la Palestra, su incarico del Comune al fine dello Studio di Vulnerabilità Sismica degli edifici, sono state effettuate 3 prove MASW e 2 prove Down-hole nei fori di sondaggio S1 ed S2.

Le prove down-hole sono state eseguite con un geofono 3D da foro BHG1 Geostuff con centralina da superficie motorizzata. Per l'acquisizione è stato utilizzato un sismografo multicanale ad alta risoluzione Geometrics ES-3000. Le prove MASW sono state effettuate con un sismografoES-3000 Geometrics e geofoni da 4.5 hz Geospace.

UBICAZIONE DELLE PROVE DOWN-HOLE E MASW

Nella figura 1 seguente è mostrata l'ubicazione delle prove sismiche eseguite su planimetria catastale fornita dalla Committenza.

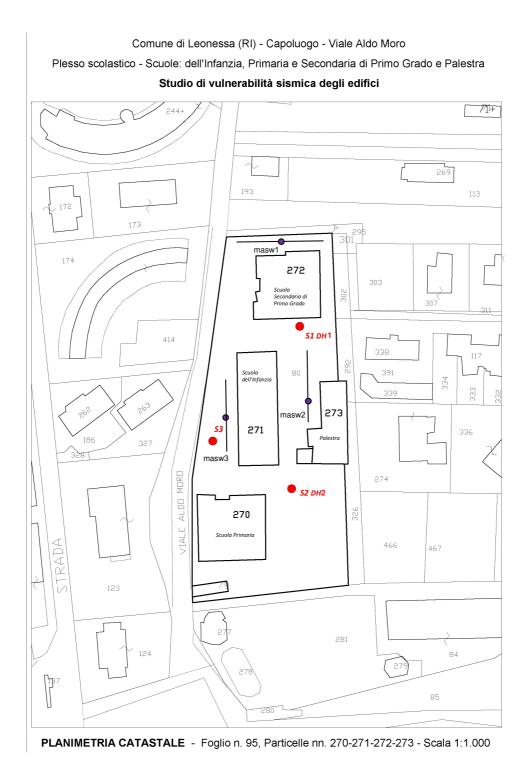


Figura 1: ubicazione delle prove Down-Hole e masw su planimetria catastale.

PROVE DOWN-HOLE: METODOLOGIA E RISULTATI DELL'INDAGINE

Nel metodo sismico down-hole (DH) viene misurato il tempo necessario per le onde P e S di spostarsi tra una sorgente sismica, posta in superficie, e il ricevitore, posto all'interno di un foro di sondaggio.

Le componenti indispensabili per una misura DH accurata consistono:

- 1) una sorgente meccanica in grado di generare onde elastiche ricche di energia e direzionali;
- 2) un geofono tridimensionale, con appropriata risposta in frequenza (4,5-14 Hz), dotato di un sistema di ancoraggio alle pareti del tubo-foro;
- 3) un sismografo multi-canale, in grado di registrare le forme d'onda in modo digitale e di registrarle su memoria di massa;
- 4) un trasduttore (*trigger*) alloggiato nella sorgente necessario per l'identificazione dell'istante di partenza della sollecitazione dinamica mediante massa battente.

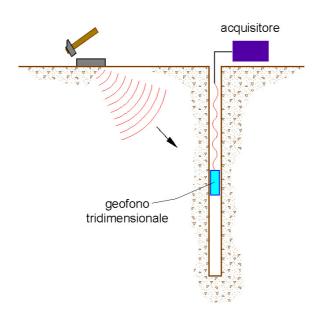


Figura 2 - Schema di acquisizione

La sorgente consiste in una palanca in legno che viene accoppiata con il terreno grazie ad un grave (ad esempio con il peso di un'automobile), tale grave viene adagiato in superficie ad una distanza di ordine metrico dal foro e orientato in direzione ortogonale ad

un raggio uscente dall'asse foro. Alla sorgente è agganciato il trasduttore di velocità utilizzato come *trigger*.

Una volta raggiunta la profondità di prova il ricevitore viene assicurato alle pareti del tubo di rivestimento, la sorgente viene colpita in senso verticale (per generare onde di compressione P) e lateralmente da entrambi i lati (per generare onde di taglio SH, in fase ed in opposizione di fase) e, contemporaneamente, parte la registrazione del segnale di *trigger* e dei ricevitori.

Eseguite le registrazioni la profondità del ricevitore viene modificata e la procedura sperimentale ripetuta.

Interpretazione down hole con il metodo "diretto"

Per poter interpretare il down hole con il **metodo diretto**, inizialmente, bisogna correggere i tempi di tragitto (t) misurati lungo i percorsi sorgente-ricevitore per tenere conto dell'inclinazione del percorso delle onde. Se d è la distanza della sorgente dall'asse del foro, r la distanza fra la sorgente e la tripletta di sensori, z la profondità di misura è possibile ottenere i tempi corretti (t_{COrr}) mediante la seguente formula di conversione:

$$1.0)t_{corr} = \frac{z}{r}t$$

Calcolati i tempi corretti sia per le onde P che per le onde S si realizza il grafico $t_{COrr} - z$ in modo che la velocità media delle onde sismiche in strati omogenei di terreno è rappresentata dall'inclinazione dei segmenti di retta lungo i quali si allineano i dati sperimentali.

Ottenuti graficamente i sismostrati si ottengono la densità media, funzione della velocità e della profondità, e i seguenti parametri:

1) coefficiente di Poisson medio:

$$2.0)v_{\text{medio}} = 0.5 \frac{\left(\frac{V_{\text{p}}}{V_{\text{s}}}\right)^{2} - 2}{\left(\frac{V_{\text{p}}}{V_{\text{s}}}\right)^{2} - 1}$$

2) modulo di deformazione a taglio medio:

$$3.0)G_{\text{medio}} = \rho V_{\text{s}}^2$$

3) modulo di compressibilità edometrica medio:

$$4.0)E_{\text{dmedio}} = \rho V_{\text{p}}^2$$

4) modulo di Young medio:

$$5.0)E_{\text{medio}} = 2\rho V_{\text{s}}^2 (1+\nu)$$

5) modulo di compressibilità volumetrica medio:

$$6.0) E_{\text{vmedio}} = \rho \left(V_{\text{p}}^2 - \frac{4}{3} V_{\text{s}}^2 \right)$$

Interpretazione down hole con il metodo "intervallo"

Con il metodo intervallo i tempi di tragitto dell'onda sismica si misurano fra due ricevitori consecutivi (figura 5) posti a differente profondità, consentendo così di migliorare la qualità delle misure (*velocità d'intervallo*).

Quando si dispone di un solo ricevitore, cioè nell'ipotesi in cui le coppie non corrispondano ad un unico impulso, i valori di velocità determinati vengono definiti di *pseudo-intervallo*, consentendo solo un'apparente migliore definizione del profilo di velocità.

Ottenute le misure è possibile calcolare i tempi corretti con la 1.0) e la velocità intervallo delle onde P e S, con relativo grafico (figura 6), con la formula seguente:

$$7.0)V_{p,s} = \frac{Z_2 - Z_1}{t_{2corr} - t_{1corr}}$$

Ottenute le velocità intervallo si calcolano la densità, il coefficiente di Poisson, il modulo di deformazione a taglio, il modulo di compressibilità edometrica, il modulo di Young, il modulo di compressibilità volumetrica per ogni intervallo con le formule riportate sopra. Il metodo intervallo presenta però dei limiti:

- a) non tiene conto della velocità degli strati sovrastanti;
- b) non è applicabile nel caso in cui t2corr < t1corr.

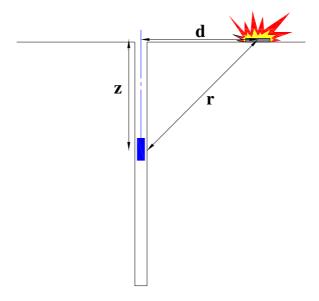


Figura 3 – Schema di down hole con metodo diretto

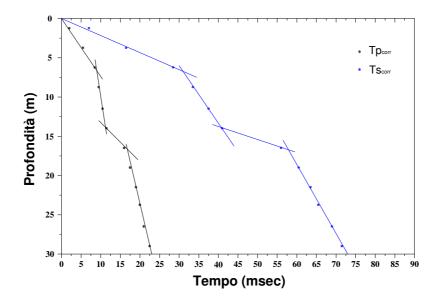


Figura 4 – Dromocrone

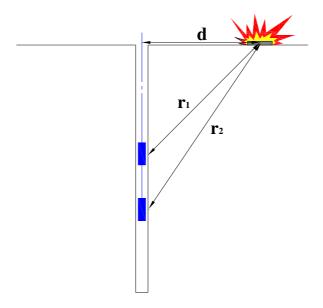


Figura 5 – Schema di down hole con metodo intervallo

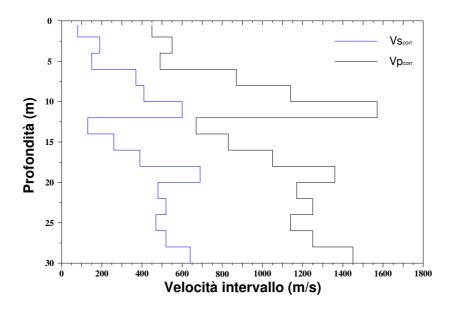


Figura 6 – Profilo delle velocità sismiche con metodo intervallo

STRUMENTAZIONI UTILIZZATE E MODALITÀ OPERATIVE

Per la realizzazione delle prove profilo down-hole è stato utilizzato un geofono tridimensionale BHG1 GEOSTUFF da 4,5 hz con blocco in pozzo motorizzato; l'unità di energizzazione, una trave di legno di circa 2,5mX0,2mX0,2m è stata resa solidale al terreno con il peso di un'automobile; in entrambe le prove il passo delle acquisizioni in foro è stato di 1 m, con distanza sorgente-boccapozzo di 2 m. Per l'energizzazione è stata utilizzata una mazza con trigger incorporato. Per ogni step di acquisizione sono state acquisite onde Shx, Shy (mediante energizzazioni da entrambi i lati della trave di legno per ottenere onde S in fase opposta) ed onde P energizzando una placca di alluminio poggiata sul terreno.

Figura 7: nelle foto è evidenziata la fase di immissione del geofono 3D nel foro di sondaggio S2 e la trave in legno, utilizzata per le energizzazioni, resa solidale al terreno grazie al peso dell'automobile.

Figura 8: nella foto è evidenziata la fase di immissione del geofono 3D nel foro di sondaggio S1 e la trave in legno, utilizzata per le energizzazioni, resa solidale al terreno grazie al peso dell'automobile.

DOWN-HOLE DH EFFETTUATE NEL FORO DI SONDAGGIO S1 ed S2

Nel presente paragrafo vengono mostrate le elaborazioni risultanti relative alla downhole denominata **DH1** eseguita nel foro di sondaggio **S1** e **DH2** eseguita nel foro di sondaggio **S2** secondo le modalità operative descritte nei paragrafi precedenti. La profondità raggiunta in entrambe le prove (fondo foro) è stata di (fondo foro) è stata di 30 m a partire dal piano campagna.

Simboli utilizzati

SR = Distanza tra la sorgente e il ricevitore

Tpcorr = Tempo di tragitto corretto per le

onde P

Tscorr = Tempo di tragitto corretto per le

onde S

Vp = Velocità onde P

Vs = Velocità onde S

g = Peso di volume

ni = Coefficiente di Poisson

G = Modulo di deformazione a taglio

Ed = Modulo di compressibilità edometrica

E = Modulo di Young

Ev = Modulo di compressibilità volumetrica

PROVA DH1

Interpretazione delle misure

Dati iniziali

Offset scoppio	Numero di ricezioni	Posizione primo geofono	Interdistanza
(m)		(m)	(m)
2	30	1	1

Dati misure down hole

Registrazioni	Z	Тр	Ts
Nr.	(m)	(msec)	(msec)
1	1,00	4,40	12,60
2	2,00	5,10	13,70
3	3,00	6,30	14,60
4	4,00	7,00	15,60
5	5,00	7,70	16,40
6	6,00	8,30	17,60
7	7,00	9,00	18,60
8	8,00	9,60	19,60
9	9,00	10,20	20,70
10	10,00	10,65	21,70
11	11,00	11,10	22,50
12	12,00	11,50	23,30
13	13,00	11,90	24,00
14	14,00	12,50	25,10
15	15,00	13,10	26,00
16	16,00	13,85	27,10
17	17,00	14,60	28,40
18	18,00	15,35	30,10
19	19,00	15,90	31,40
20	20,00	16,40	32,20
21	21,00	16,90	32,90
22	22,00	17,50	33,80
23	23,00	18,05	34,50
24	24,00	18,60	35,60
25	25,00	19,10	36,50
26	26,00	19,60	37,40
27	27,00	20,05	38,20
28	28,00	20,50	39,20
29	29,00	21,05	40,30
30	30,00	21,60	41,40

Risultati

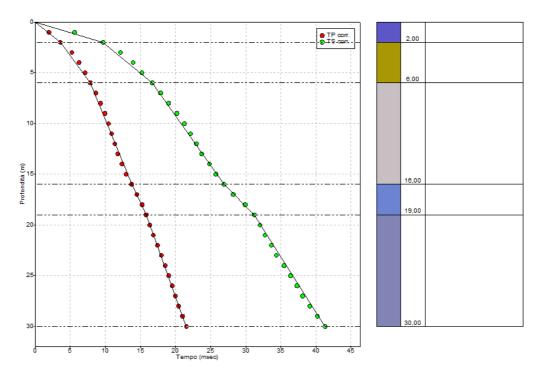
SR	Tpcorr	Tscorr
(m)	(msec)	(msec)
2,2361	1,9677	5,6349
2,8284	3,6062	9,6874
3,6056	5,2419	12,1479
4,4721	6,261	13,9531
5,3852	7,1493	15,227
6,3246	7,8741	16,6968
7,2801	8,6537	17,8844
8,2462	9,3134	19,0148
9,2195	9,9571	20,2071
10,198	10,4432	21,2786
11,1803	10,921	22,1371
12,1655	11,3435	22,983
13,153	11,7616	23,7209
14,1421	12,3744	24,8477
15,1328	12,9851	25,7719
16,1245	13,7431	26,8907
17,1172	14,50	28,2055
18,1108	15,2561	29,9159
19,105	15,8126	31,2275
20,0998	16,3186	32,0402
21,095	16,8239	32,7518
22,0907	17,4281	33,6612
23,0868	17,9821	34,3703
24,0832	18,5358	35,477
25,0799	19,0392	36,3838
26,0768	19,5423	37,2898
27,074	19,9952	38,0956
28,0713	20,4479	39,1004
29,0689	21,0001	40,2045
30,0666	21,5522	41,3083

Vp	Vs	g	ni	G	Ed	E	Ev
(m/s)	(m/s)	(kN/mc)		(MPa)	(MPa)	(MPa)	(MPa)
508,21	177,47	20,99	0,4306	67,41	552,81	192,87	462,93
610,31	246,76	20,51	0,4023	127,35	779,02	357,17	609,22
611,36	406,42	21,63	0,1041	364,32	824,38	804,49	338,62
981,26	553,96	22,26	0,2661	696,56	2185,61	1763,83	1256,86
1125,75	784,99	22,97	0,0268	1443,34	2968,41	2964,04	1043,96
1379,69	680,36	22,50	0,3393	1062,04	4367,42	2844,78	2951,37
1282,71	842,03	22,95	0,1214	1659,27	3850,52	3721,41	1638,16
1515,84	884,64	23,12	0,2418	1845,02	5417,19	4582,29	2957,17
1553,52	838,71	22,94	0,2943	1645,50	5645,55	4259,54	3451,56
2057,19	933,27	23,30	0,3704	2069,43	10055,04	5671,89	7295,81

2092,93	1164,82	24,06	0,2756	3328,84	10746,93	8492,54	6308,48
2366,86	1182,17	24,11	0,3338	3435,87	13772,78	9165,53	9191,63
2391,78	1355,20	24,57	0,2636	4601,41	14332,66	11628,68	8197,45
1631,85	887,47	23,13	0,29	1857,64	6280,81	4792,71	3803,95
1637,47	1082,02	23,80	0,1125	2841,36	6507,33	6322,03	2718,85
1319,26	893,82	23,15	0,0757	1885,95	4108,57	4057,43	1593,97
1321,18	760,57	22,18	0,2522	1308,34	3947,89	3276,61	2203,44
1322,58	584,66	21,36	0,3786	744,54	3810,00	2052,85	2817,28
1796,94	762,43	22,13	0,3902	1311,78	7286,65	3647,27	5537,61
1976,29	1230,47	24,24	0,1835	3742,43	9654,13	8858,33	4664,22
1979,02	1405,28	24,70		4973,96	9864,54	9947,92	3232,59
1655,08	1099,63	23,86	0,1049	2942,00	6664,81	6501,23	2742,14
1805,06	1410,24	24,71		5011,16	8209,85	10022,32	1528,31
1806,03	903,59	23,19	0,3331	1930,74	7713,12	5147,74	5138,80
1986,50	1102,78	23,87	0,2773	2960,12	9605,26	7561,92	5658,43
1987,68	1103,76	23,87	0,2771	2965,39	9616,67	7574,20	5662,82
2207,99	1241,00	24,27	0,2691	3811,47	12065,44	9674,27	6983,48
2208,96	995,22	23,52	0,3727	2375,50	11702,87	6521,70	8535,54
1810,94	905,72	23,20	0,3332	1940,69	7758,46	5174,66	5170,88
1811,26	905,96	23,20	0,3332	1941,72	7761,20	5177,40	5172,25

DH 1 - Metodo diretto

Profondità di riferimento: 30 m **VS30:** 726 m/s


Sismostrati con metodo diretto

Profondità
(m)
2
6
16
19
30

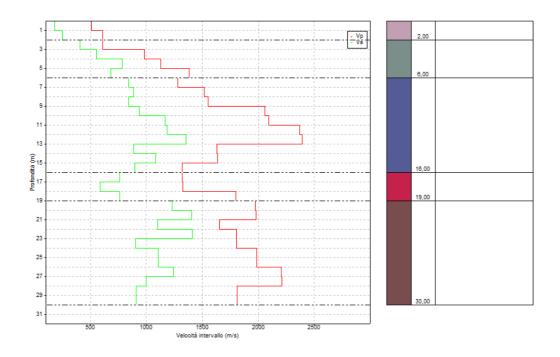
Valori medi

,							
Vp medio	Vs medio	g medio	ni medio	G medio	Ed medio	E medio	Ev medio
(m/s)	(m/s)	(kN/mc)		(MPa)	(MPa)	(MPa)	(MPa)
554,02	206,4	19,51	0,42	84,74	610,52	240,55	497,54
938,97	570,61	22,24	0,21	738,49	1999,69	1783,06	1015,04
1703,58	981,35	23,47	0,25	2305,04	6946,24	5770,32	3872,86
1449,28	691,24	22,93	0,35	1117,04	4910,28	3022,17	3420,9
1916,38	1091,27	23,83	0,26	2894,23	8925,44	7293,81	5066,47

Dromocrone

DH 1 - Metodo intervallo

Profondità di riferimento: 30 m **VS30:** 748 m/s


Sismostrati con metodo Intervallo

Descrizione	Profondità
(-)	(m)
Strato1	2
Strato2	6
Strato3	16
Strato4	19
Strato5	30

Valori medi

	Vp medio	Vs medio	g medio	ni medio	G medio	Ed medio	E medio	Ev medio
	(m/s)	(m/s)	(kN/mc)		(MPa)	(MPa)	(MPa)	(MPa)
Ī	559,26	212,12	20,75	0,42	97,38	665,91	275,02	536,08
Ī	1024,52	606,43	22,34	0,18	891,57	2586,46	2094,28	1397,70
Ī	1784,94	1006,42	23,51	0,24	2517,03	8071,74	6269,41	4715,70
	1480,23	702,55	21,89	0,34	1121,55	5014,85	2992,24	3519,44
Ī	1930,44	1118,51	23,88	0,28	3145,02	9146,94	7469,24	4953,59

Profilo velocità di intervallo

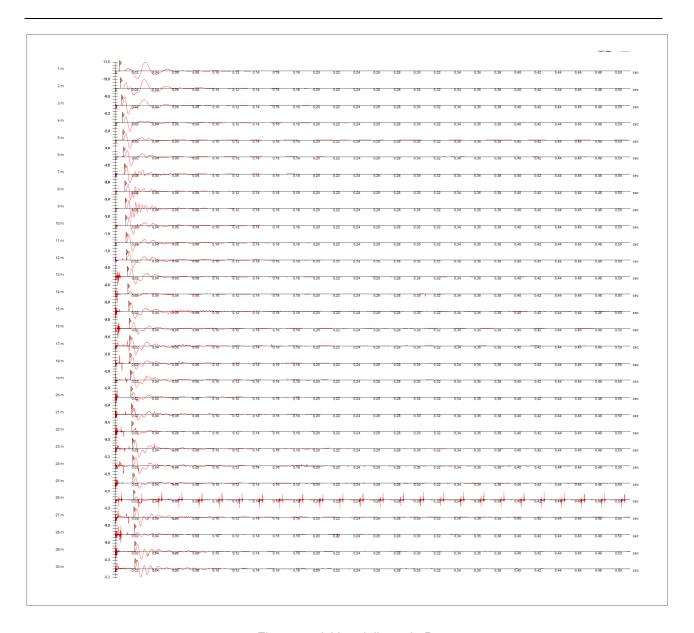


Figura 9: picking delle onde P.

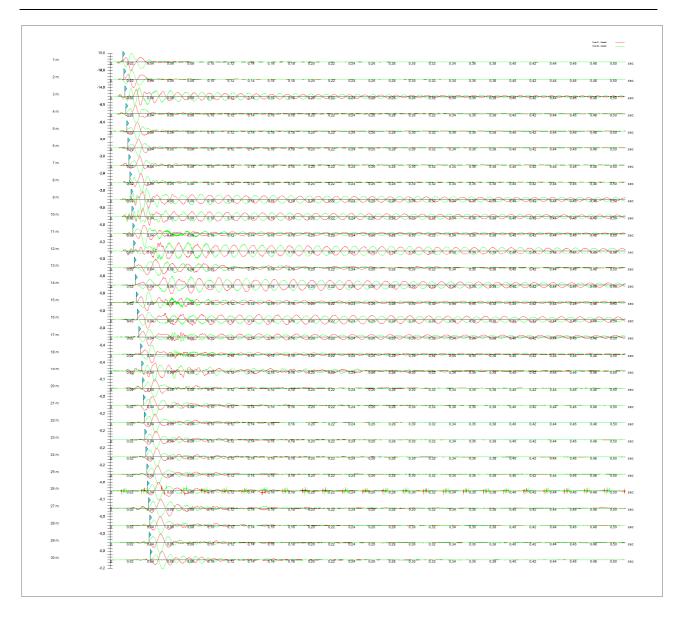


Figura 10: picking delle onde S.

PROVA DH2

Interpretazione delle misure

Dati iniziali

Offset scoppio	Numero di ricezioni	Posizione primo geofono	Interdistanza
(m)		(m)	(m)
2	30	1	1

Dati misure down hole

Registrazioni	Z	Тр	Ts
Nr.	(m)	(msec)	(msec)
1	1,00	5,60	11,10
2	2,00	6,20	12,10
3	3,00	6,90	14,50
4	4,00	7,50	15,70
5	5,00	7,70	16,40
6	6,00	8,10	17,10
7	7,00	8,70	18,00
8	8,00	9,10	18,90
9	9,00	9,50	20,00
10	10,00	10,00	21,30
11	11,00	10,60	22,50
12	12,00	11,00	23,40
13	13,00	11,50	24,40
14	14,00	12,30	25,70
15	15,00	12,80	26,40
16	16,00	13,30	27,10
17	17,00	13,90	28,10
18	18,00	14,40	29,00
19	19,00	14,80	29,70
20	20,00	15,20	30,30
21	21,00	15,90	31,50
22	22,00	16,40	32,50
23	23,00	16,85	33,50
24	24,00	17,20	34,10
25	25,00	17,80	35,20
26	26,00	18,20	35,80
27	27,00	18,60	36,40
28	28,00	19,10	37,30
29	29,00	19,55	38,10
30	30,00	20,20	39,00

Risultati

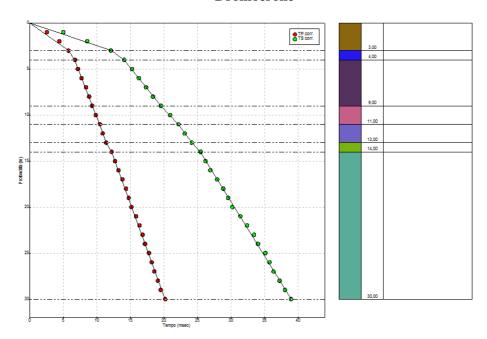
Tpcorr	Tscorr
. –	
(msec)	(msec)
2,5044	4,9641
4,3841	8,556
5,7411	12,0647
6,7082	14,0425
7,1493	15,227
7,6843	16,2225
8,3653	17,3074
8,8283	18,3357
9,2738	19,5237
9,8058	20,8864
10,429	22,1371
10,8503	23,0816
11,3663	24,1163
12,1764	25,4417
12,6877	26,1684
13,1973	26,8907
13,8048	27,9075
14,3119	28,8226
14,7187	29,5368
15,1246	30,1496
15,8284	31,3581
16,3327	32,3665
16,7867	33,3741
17,1406	33,9822
17,7433	35,0879
18,1464	35,6946
18,5492	36,3006
19,0515	37,2052
19,5037	38,0097
20,1553	38,9136
	2,5044 4,3841 5,7411 6,7082 7,1493 7,6843 8,3653 8,8283 9,2738 9,8058 10,429 10,8503 11,3663 12,1764 12,6877 13,1973 13,8048 14,3119 14,7187 15,1246 15,8284 16,3327 16,7867 17,1406 17,7433 18,1464 18,5492 19,0515 19,5037

Vp	Vs	g	ni	G	Ed	Е	Ev
(m/s)	(m/s)	(kN/mc)		(MPa)	(MPa)	(MPa)	(MPa)
399,30	201,45	21,41	0,3293	88,60	348,09	235,55	229,96
532,00	278,40	20,93	0,3114	165,42	604,05	433,86	383,49
736,92	285,01	20,45	0,4121	169,39	1132,44	478,39	906,58
1034,02	505,61	22,00	0,3429	573,50	2398,61	1540,31	1633,95
2267,06	844,24	22,96	0,4195	1668,72	12033,09	4737,50	9808,13
1869,16	1004,52	23,55	0,2969	2423,19	8390,02	6285,27	5159,10
1468,43	921,74	23,26	0,1749	2015,14	5114,41	4735,18	2427,55
2159,83	972,48	23,44	0,3729	2260,47	11150,03	6206,80	8136,08
2244,67	841,75	22,95	0,4182	1658,17	11791,44	4703,23	9580,56
1879,70	733,84	22,38	0,4101	1228,97	8063,37	3465,94	6424,74
1604,62	799,55	22,55	0,3349	1470,00	5920,66	3924,61	3960,66

2373,61	1058,76	23,73	0,3758	2712,52	13633,14	7463,77	10016,45
1937,99	966,46	23,42	0,3345	2230,66	8969,52	5953,63	5995,30
1234,42	754,49	22,27	0,2018	1292,73	3460,39	3107,21	1736,76
1955,80	1376,08	24,62	0,0098	4753,95	9603,21	9601,08	3264,61
1962,33	1384,47	24,64	0,0045	4816,01	9675,29	9675,36	3253,95
1646,09	983,48	23,48	0,2224	2315,84	6487,61	5661,77	3399,82
1972,00	1092,78	23,84	0,2784	2903,03	9453,65	7422,47	5582,95
2458,21	1400,17	24,68	0,2599	4933,85	15207,66	12432,32	8629,19
2463,66	1631,86	25,20	0,1092	6842,99	15597,01	15180,49	6473,03
1420,86	827,47	22,89	0,2434	1598,19	4712,24	3974,38	2581,32
1982,94	991,67	23,51	0,3332	2357,58	9426,51	6286,25	6283,08
2202,65	992,46	23,51	0,3726	2361,34	11631,16	6482,35	8482,71
2825,65	1644,46	25,23	0,2439	6957,34	20541,55	17308,47	11265,10
1659,20	904,41	23,19	0,2886	1934,24	6509,95	4984,92	3930,96
2480,77	1648,26	25,24	0,1048	6992,30	15839,51	15450,19	6516,44
2482,62	1650,17	25,24	0,1042	7008,52	15863,14	15477,62	6518,45
1990,84	1105,46	23,88	0,2771	2975,77	9651,31	7600,71	5683,62
2211,41	1243,01	24,28	0,2691	3825,40	12107,84	9709,63	7007,30
1534,68	1106,32	23,88		2980,40	5735,21	5960,80	1761,34

DH 2 - Metodo diretto

Profondità di riferimento: 30 m **VS30:** 771 m/s


Sismostrati con metodo diretto

Descrizione	Profondità
(-)	(m)
Strato1	3
Strato2	4
Strato3	9
Strato4	11
Strato5	13
Strato6	14
Strato7	30

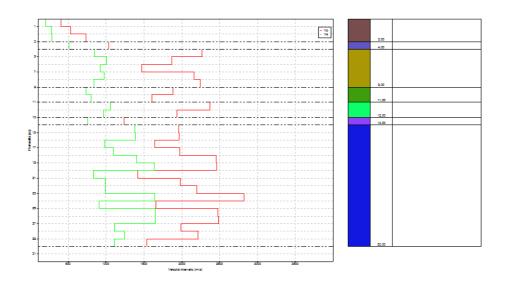
Valori medi

Vp medio	Vs medio	g medio	ni medio	G medio	Ed medio	E medio	Ev medio
(m/s)	(m/s)	(kN/mc)		(MPa)	(MPa)	(MPa)	(MPa)
522,65	248,76	19,76	0,35	124,7	550,49	337,59	384,22
1030,93	505,05	23,04	0,34	599,18	2496,59	1608,33	1697,68
1953,12	912,41	23,22	0,36	1971,46	9033,78	5364,05	6405,16
1724,14	763,36	23,4	0,38	1390,53	7093,6	3832,55	5239,56
2127,66	1010,1	23,57	0,35	2452,29	10880,45	6643,35	7610,73
1234,57	757,58	23,84	0,2	1395,16	3705,12	3342,84	1844,91
2005,01	1187,82	24,12	0,23	3470,6	9888,59	8535,04	5261,12

Dromocrone

DH 2 - Metodo intervallo

Profondità di riferimento: 30 m **VS30:** 791 m/s


Sismostrati con metodo Intervallo

Descrizione	Profondità
(-)	(m)
Strato1	3
Strato2	4
Strato3	9
Strato4	11
Strato5	13
Strato6	14
Strato7	30

Valori medi

Vp medio (m/s)	Vs medio (m/s)	g medio (kN/mc)	ni medio	G medio (MPa)	Ed medio (MPa)	E medio (MPa)	Ev medio (MPa)
556,07	` ,	, ,	0,35	, ,	` /	,	506,68
1034,02	505,61	22,00	0,34	573,50	2398,61	1540,31	1633,95
2001,83	916,95	23,23	0,34	2005,14	9695,80	5333,60	7022,28
1742,16	766,70	22,47	0,37	1349,48	6992,02	3695,27	5192,70
2155,80	1012,61	23,57	0,36	2471,59	11301,33	6708,70	8005,88
1234,42	754,49	22,27	0,20	1292,73	3460,39	3107,21	1736,76
2078,11	1248,91	24,21	0,21	4097,30	11127,68	9575,55	5664,62

Profilo velocità di intervallo



Figura 11 picking delle onde P.

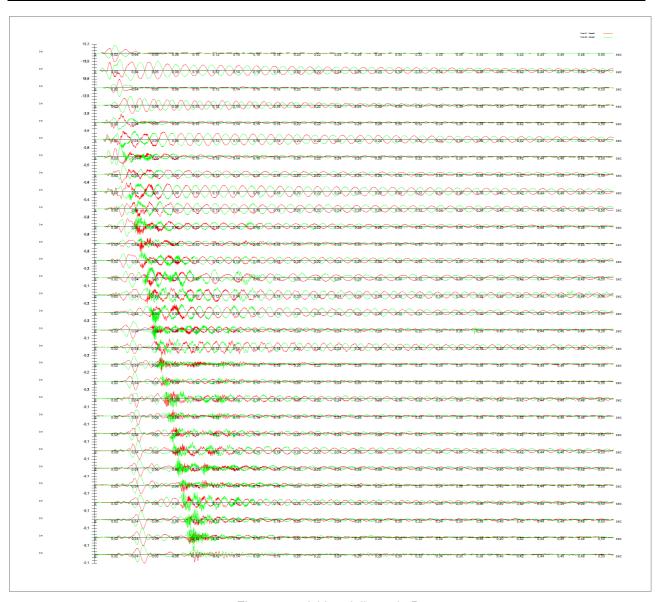
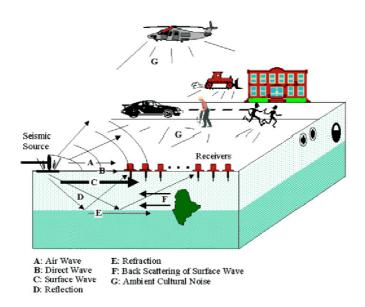
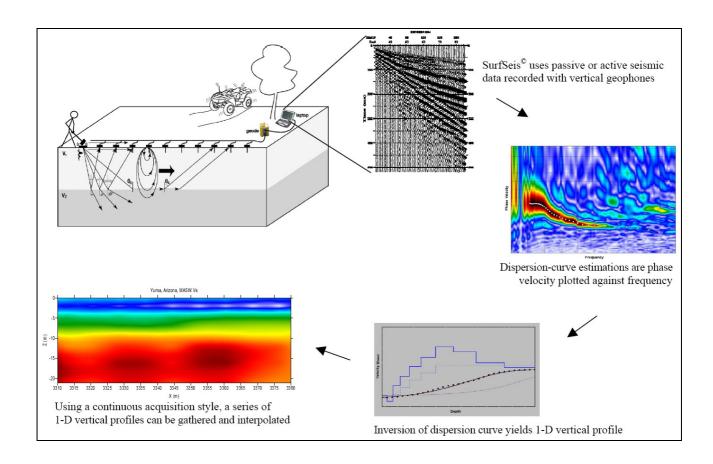


Figura 12: picking delle onde P.


PROSPEZIONE SISMICA MASW

M.A.S.W. (Analisi Multipla delle Onde di Superficie):


La M.A.S.W. è una metodologia sismica utilizzata per la caratterizzazione delle unità subsuperficiali (fino ed oltre 30 m di profondità) presenti nel sottosuolo mediante la generazione di profili unidimensionali e tomografie bidimensionali del campo di velocità delle onde S (Vs), con una approssimazione sul valore di Vs di circa il 10%. Come è ben noto le onde S sono direttamente correlabili ai parametri geomeccanici delle rocce che attraversano. Questa metodologia utilizza le onde superficiali di Raleygh normalmente chiamate ground roll.

La registrazione avviene attraverso un sismografo multicanale connesso a più geofoni. La modalità di propagazione delle onde di superficie viene analizzata attraverso tecniche di processamento particolari che permettono di associare un profilo verticale delle Vs alle onde di superficie registrate.

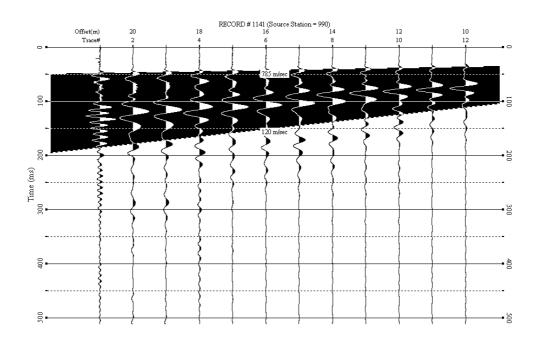
La notevole energia delle onde di superficie (tipo Raleygh) permette di lavorare e di effettuare prospezioni anche in aree dove normalmente non è possibile con le classiche indagini sismiche a riflessione o a rifrazione data la bassa energia delle onde riflesse o rifratte che facilmente possono essere disturbate da onde di altro tipo legate alla normale noise ambientale (fig. 11).

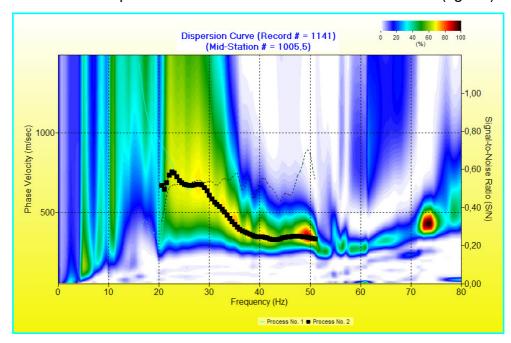
il processo di acquisizione e di elaborazione può essere brevemente schematizzato come segue (fig. 12):

STRUMENTAZIONI UTILIZZATE E MODALITÀ OPERATIVE

Per l'acquisizione è stato utilizzato un sismografo Geometrics ES-3000, dotato di geofoni Geospace.

Per la realizzazione dei profili verticali M.A.S.W. sono stati utilizzati geofoni da 4,5 Hz ed stendimenti con distanza sorgente-primo ricevitore pari a 5, 7 e 10 m. L'interdistanza geofonica è stata posta pari ad 1 m. Per l'analisi ed interpretazione dei dati sismici acquisiti è stato utilizzato il software Surfseis 1.5 elaborato dall'Istituto di Ricerca Kansas Geological Survey. L'energizzazione è stata effettuata mediante l'uso di una massa battente da 8 kg. Per l'ubicazione degli stendimenti sismici è stata utilizzata una planimetria catastale fornita dalla Committenza.




Figura 13: stendimenti sismici m.a.s.w. nell'area oggetto di studio.

PROFILO VERTICALE M.A.S.W. M1

Nella figura 14 seguente è mostrato il sismogramma d'acquisizione della M.A.S.W.,

la curva di dispersione estratta mediante analisi "overtone" (fig. 15)

Ed infine il profilo verticale delle onde S calcolato fino a 20 m di profondità a partire dal p.c. utilizzando frequenze comprese tra 21 e 51 hz.

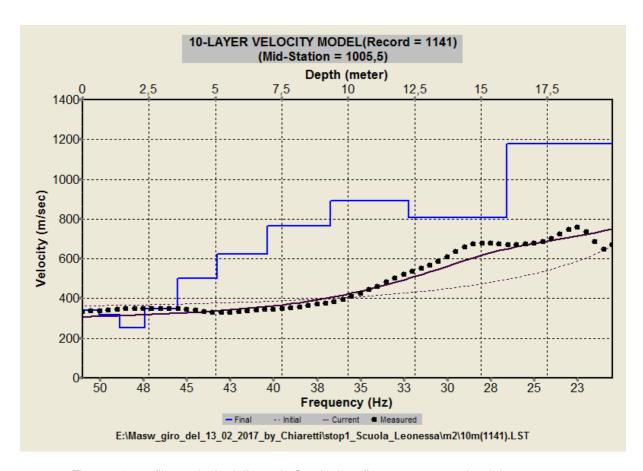
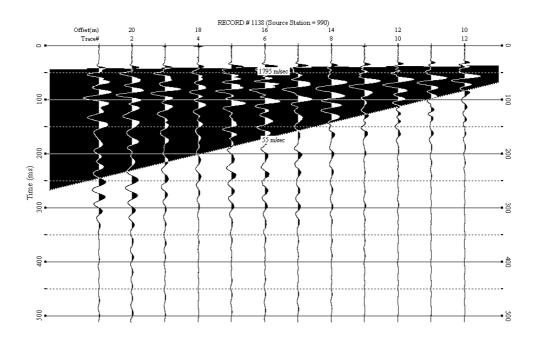


Figura 16: profilo verticale delle onde S calcolato fino a 20 m a partire dal p.c.

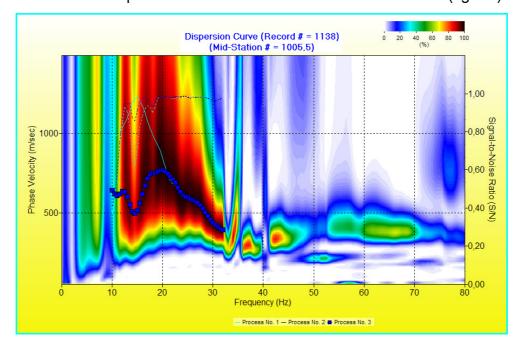
Sulla base dei dati di velocità delle onde S osservabili nel profilo verticale è possibile fornire una valutazione della Vs₃₀ seguendo la relazione:

$$V_{S30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_i}}$$

Pertanto:


Sondaggio sismico verticale \rightarrow Vs₃₀ = 738 m/s +/- 73 m/s

Si allega la tabella di calcolo per la Vs_{30} relativa al sondaggio sismico verticale M1:


Vs ₃₀ M2				
profondità (m)	spessore strato (m)	velocità onde S (m/s)	rapporto hi/vi	
1	1	339	0,0029]
2	1	254	0,0039	
3	1	348	0,0029	
4	1	348	0,0029]
5	1	503	0,0020]
6	1	623	0,0016]
7	1	623	0,0016]
8	1	765	0,0013]
9	1	765	0,0013	
10	1	892	0,0011]
11	1	892	0,0011	
12	1	892	0,0011]
13	1	806	0,0012	
14	1	806	0,0012	
15	1	806	0,0012	
16	1	806	0,0012]
17	1	1177	0,0008	
18	1	1177	0,0008]
19	1	1177	0,0008	
20	1	1177	0,0008]
21	1	1177	0,0008	interpol.
22	1	1177	0,0008	interpol.
23	1	1177	0,0008	interpol.
24	1	1177	0,0008	interpol.
25	1	1177	0,0008	interpol.
26	1	1177	0,0008	interpol.
27	1	1177	0,0008	interpol.
28	1	1177	0,0008	interpol.
29	1	1177	0,0008	interpol.
30	1	1177	0,0008	interpol.
			0,0407	Vs ₃₀
				738 m/s

PROFILO VERTICALE M.A.S.W. M2

Nella figura 17 seguente è mostrato il sismogramma d'acquisizione della M.A.S.W.,

la curva di dispersione estratta mediante analisi "overtone" (fig. 18)

Ed infine il profilo verticale delle onde S calcolato fino a 40 m di profondità a partire dal p.c. utilizzando frequenze comprese tra 10 e 32 hz.

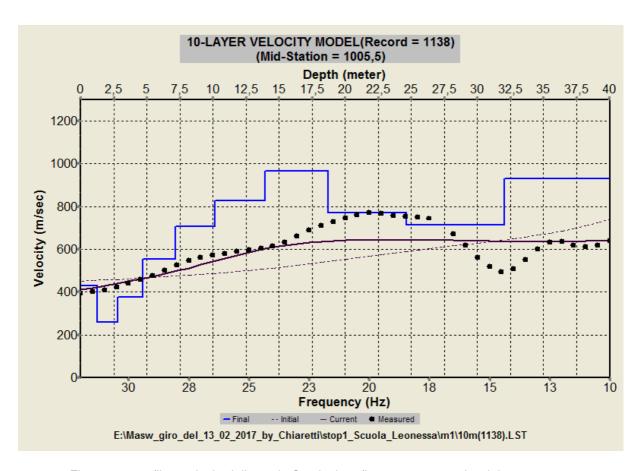


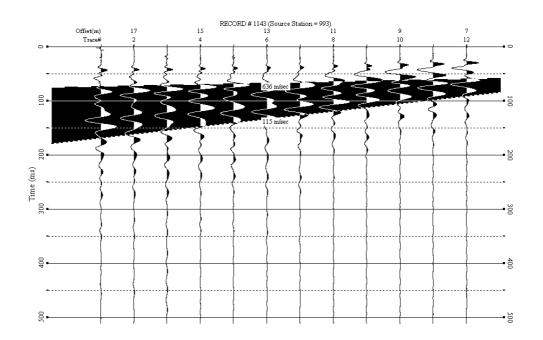
Figura 19: profilo verticale delle onde S calcolato fino a 40 m a partire dal p.c.

Sulla base dei dati di velocità delle onde S osservabili nel profilo verticale è possibile fornire una valutazione della Vs₃₀ seguendo la relazione:

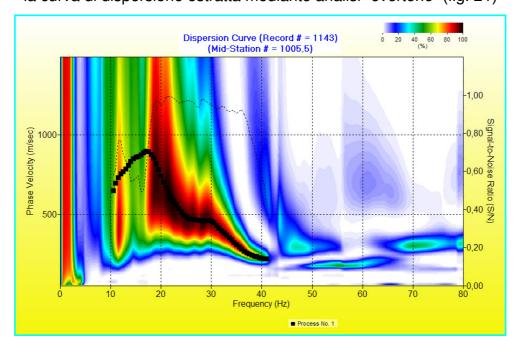
$$V_{S30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_i}}$$

Pertanto:

Sondaggio sismico verticale \rightarrow Vs₃₀ = 619 m/s +/- 62 m/s


Si allega la tabella di calcolo per la Vs_{30} relativa al sondaggio sismico verticale M2:

	1	1	
Vs ₃₀ M1			
	spessore	velocità	rapporto
profondità (m)	strato (m)	onde S (m/s)	hi/vi
1	1	430	0,0023
2	1	260	0,0038
3	1	260	0,0038
4	1	376	0,0027
5	1	376	0,0027
6	1	555	0,0018
7	1	555	0,0018
8	1	707	0,0014
9	1	707	0,0014
10	1	707	0,0014
11	1	828	0,0012
12	1	828	0,0012
13	1	828	0,0012
14	1	828	0,0012
15	1	967	0,0010
16	1	967	0,0010
17	1	967	0,0010
18	1	967	0,0010
19	1	772	0,0013
20	1	772	0,0013
21	1	772	0,0013
22	1	772	0,0013
23	1	772	0,0013
24	1	772	0,0013
25	1	705	0,0014
26	1	705	0,0014
27	1	705	0,0014
28	1	705	0,0014
29	1	705	0,0014
30	1	705	0,0014
			0,0484


Vs₃₀ 619 m/s

PROFILO VERTICALE M.A.S.W. M3

Nella figura 20 seguente è mostrato il sismogramma d'acquisizione della M.A.S.W.,

la curva di dispersione estratta mediante analisi "overtone" (fig. 21)

Ed infine il profilo verticale delle onde S calcolato fino ad oltre 37 m di profondità a partire dal p.c. utilizzando frequenze comprese tra 11 e 41 hz.

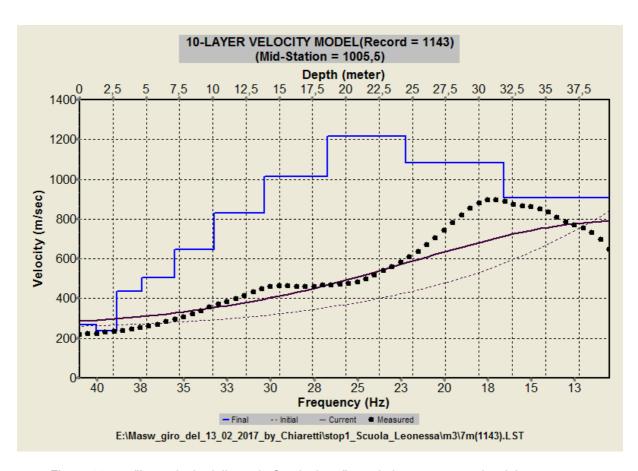


Figura 22: profilo verticale delle onde S calcolato fino ad oltre 37 m a partire dal p.c.

Sulla base dei dati di velocità delle onde S osservabili nel profilo verticale è possibile fornire una valutazione della Vs₃₀ seguendo la relazione:

$$V_{S30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_i}}$$

Pertanto:

Sondaggio sismico verticale \rightarrow Vs₃₀ = 676 m/s +/- 68 m/s

Si allega la tabella di calcolo per la Vs_{30} relativa al sondaggio sismico verticale M3:

Vs ₃₀ M3			
profondità (m)	spessore strato (m)	velocità onde S (m/s)	rapporto hi/vi
1	1	269	0,0037
2	1	238	0,0042
3	1	238	0,0042
4	1	435	0,0023
5	1	435	0,0023
6	1	505	0,0020
7	1	505	0,0020
8	1	647	0,0015
9	1	647	0,0015
10	1	829	0,0012
11	1	829	0,0012
12	1	829	0,0012
13	1	829	0,0012
14	1	829	0,0012
15	1	1013	0,0010
16	1	1013	0,0010
17	1	1013	0,0010
18	1	1013	0,0010
19	1	1013	0,0010
20	1	1215	0,0008
21	1	1215	0,0008
22	1	1215	0,0008
23	1	1215	0,0008
24	1	1215	0,0008
25	1	1084	0,0009
26	1	1084	0,0009
27	1	1084	0,0009
28	1	1084	0,0009
29	1	1084	0,0009
30	1	1084	0,0009
			0,0444

Vs₃₀ 676 m/s

CONSIDERAZIONI CONCLUSIVE

Grazie all'analisi multipla delle onde di superficie (M.A.S.W.) è stato possibile ottenere tre valori della Vs30 (con riferimento alla normativa e classificazione vigente) pari a 738 m/s +/- 74 m/s per il profilo denominato M1, 619 m/s +/- 62 m/s per il profilo denominato M2 e 676 m/s +/- 68 m/s per il profilo denominato M3.

BIBLIOGRAFIA

Bullen, K.E., 1963, An introduction to the theory of seismology: Cambridge University Press, 381 pp.

Coruh, c., 1985, Stretched automatic ampl itude ad justment of seismi c data: Geophysics, v. 50, p. 252-256.

Gucunski, N., and R.D. Woods, 1991, Instrumentation for SASW testing, in Geotechnical special publication no. 29,

Recentadvances in instrumentation, data acquisition and testing in soil dynamics, edited by S.K. Bhatia and G.W.

Blaney, American Society of Civil Engineers, p. 1-16.

Heukelom, W., and c.R. Foster, 1960, Dynamic testing ofpavements: Journal of the Soil Mechanics and Foundations Division, v. 86, n. SM1, p. 1-28.

Ivanov, J., C.B. Park, R.D. Miller, and I Xia, 2000, Mapping Poisson's Ratio of unconsolidated materials from an analysis of surface-wave and refraction events: Proceedings of the Syrnposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP 2000), p. 11-19.

Ivanov, J., C.B. Park, R.D. Miller, I Xia, IA. Hunter, R.L. Good, and R.A. Burns, 2000, Joint analysis of surface-wave and refraction events from river-bottom sediments [Exp. Abs.]: Soc. Explor. Geophys., p. 1307-1310.

Keiswetter, D.A., and D.W. Steeples, 1995, A field investigation of source parameters for the sledgehammer:Geophysics, v. 60, p. 1051-1057.

Mari, IL., 1984, Estimation of static corrections for shear-wave profilingusing the dispersion properties of Love waves: Geophysics, v. 49, p. 1169-1179.

McMechan, G.A., and M.I Yedlin, 1981, Analysis of dispersive waves by wave field transformation: Geophysics, v. 46, p. 869-874.

Miller, R.D., I Xia, C.B. Park, and IM. Ivanov, 1999, Multichanne\ analysis of surfaceswaves tomap bedrock: Leading Edge, v. 18, n. 12, p. 1392-1396.

Miller, R.D., J. Xia, C.B. Park, and J. Ivanov, 1999, Using MASW to map bedrock in Olathe, Kansas [Exp. Abs.]: Soc. Explor. Geophys., p. 433-436.

Miller, R.D., J. Xi a, C.B. Park, J.C. Davis, W.T. Shefchik, and L. Moore, 1999, Seismic techniques to delineate dissolution features in the upper 1000 ft at a powerplant site [Exp. Abs.]: Soc. Explor. Geophys., p. 492-495.

Miller, R.D., J. Xia, C.B. Park, and J. Ivanov, 1999, Shear wave velocity field to detect anomalies in the subsurface: proceedings of the Int'1 Conference on Applications of Geophysical Technologies, Dec. 11-15, 2000, St. Louis, Missouri.

Miller, R.D., I Xia, and C.B. Park, 1999, MASW to investigate subsidence in the Tampa, Florida area: Kansas Geological Survey Open-file Report 99-33.

Miller, R.D., I Xia, C. Park, J. Ivanov, N. Geier, and D. Laflen, 1999, Using MASW to map bedrock in Olathe, Kansas: Kansas Geological Survey Open-file Report 99-9.

Miller, RD., S.E. Pullan, IS. Waldner, and F.P. Haeni, 1986, Field comparison of shallow seismic sources: Geophysics, v. 51, p. 2067-2092.

Moore,RC., 1964,PaleoecologicalaspectsofKansasPennsylvanianandPermian Cyc\othems: Kansas Geological Bulletin 169, v. 1, p. 287-380.

Nazarian, S., KH. Stokoe II, and W.R. Hudson, 1983,Use ofspectral analysis of surface waves method for determination of moduli and thicknesses of pavement systems: Transportation Research Record No. 930, p. 38-45.

Nazarian, S., 1984, In situ determination of e1asticmoduli ofsoil deposits and pavement systems by spectral-analysis-ofsurface-

waves method: Ph.D. dissertation, University of Texas at Austin.

Park, C.B., RD. Miller, andH. Miura, 2002, Optimumfie1dparameters of a MASW survey [Exp. Abs.]: Soc. Explor. Geophys.-Japan, Tokyo, May22-23.

Park, C.B., R.D. Miller, I Xia, 1. Ivanov, IA. Hunter, R.L. Good, and R.A. Burns, 2000, Multichanne1 analysis of underwater surface waves near Vancouver, B.C., Canada [Exp. Abs.]: Soc. Explor. Geophys., p. 1303-1306.

Park, C.B., RD. Miller, and I Xia, 2000, Detection ofhigher mode surface waves over unconsolidated sediments by the MASW method: Proceedings of Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP 2000), Arlington, Va., p. 1-9.

Park, C.B., R.D. Miller, and J. Xia, 1999a, Multichannel analysis of surfacewaves: Geophysics, v. 64, n. 3, p. 800-808. Park, C.B., RD. Miller, I Xi a, IA. Hunter, and J'B, Harris, 1999, Higher mode observation by the MASW method [Exp.

Abs.]: Soc. Explor. Geophys., p.524-527.

Park, C.B., R.D. Miller, and J. Xia, 1999, Multimodal analysis ofhigh frequency surface waves: Proceedings of Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP 99), Oakland, Calif., March 14-18, p. 115-12l.

Park, C.B., RD. Miller, and J. Xia, 1999, Detection of of surface voids using surface waves: Proceedings of Symposium on the Application of Geophys- ics to Engineering and Environmental Problems (SAGEEP 99), Oakland, Calif., March 14-18, p. 281-286.

Park, C.B., RD. Miller, and I Xia, 1998a, Imaging dispersion curves of surface waves on multichannel record [Exp. Abs.]:Soc. Explor. Geophys., p. 1377-1380.

Park, C.B., R.D. Miller, and I. Xia, 1998b, Ground roll as a tool to image nearsurface anomaly [Exp. Abs.]: Soc. Explor. Geophys., p. 874-877.

Park, C.B., RD. Miller, and 1. Xia, 1997, Multichanne1 analysis of surface waves (MASW}-"A summary report of technical aspects, experimental results, and perspective": Kansas Geological Survey Open-file Report 97-10.

Park, C.B., RD. Miller, and J. Xia, 1996, Multichannel analysis of surface waves using Vibroseis (MASWV) [Exp. Abs.]: Soc. Explor. Geophys., p. 68-71.

Pullan, S.E., and J.A. Hunter, 1990, Delineation ofburied bedrock valleys using the optimum offset shallow seismic reflection technique: SocietyofExplora- tion Geophysicists, Investigations in Geophysics no. 5, S.R. Ward, ed., Volume 3: Geotechnical, p. 75-87.

Richart, F.E., Hall, J.R., and Woods, R.D., 1970, Vibrations of soils and foundations: Prentice-Hall, Inc., New Jersey, 414pp.

Rix, G.J., and E.A. Leipski, 1991, Accuracy and resolution of surface wave inversion, in Geotechnical special publication no. 29, Recent advances in instrumentation, dataacquisition and testing in soil dynamics, edited by S.K Bhatia and G.W. Blaney, American Society of Civii Engineers, p. 17-32.

Sheriff, RE., and L.P. Geldart, 1982, Exploration seismology, vol. I: Cambridge University Press, New York, 253 pp.

Sheu, IC., KR. Stokoe II, and IM. Roesset, 1988, Effect ofreflected waves in SASW testing of pavements: Transportation Research Record No. 1196, p.51-61.

Stokoe II, K.R., G.W. Wright, A.B. James, and M.R. Jose, 1994, Characterization of geotechnical sites by SASW method, in Geophysical characterization of sites, ISSMFE Technical Committee #10, edited by RD. Woods, Oxford Publishers, New Delhi.

Tokimatsu, K, S. Tamura, and R. Kojima, 1992, Effects ofmultiple modes on Rayleigh wavedispersion characteristics: Journal ofGeotechnical Engineering, American SocietyofCivil Engineering, v. 118, n. 10,p. 1529-1543.

Vardoulakis, L, and C. Vrettos, 1988, Dispersion law ofRayleigh-type waves in a compressible Gibson half space: International Journal for Numerical and AnalyticalMethods in Geomechanics, v. 12, p. 639-655.

Waters, KR., 1978, Reflection seismology: John Wiley and Sons, IDc.

Xia, I, and RD. Miller, 2000, Fast estimation of parameters of a layered-dipping earth model by inverting reflected waves: Journal of Environmental and Engineering Geophysics, v. 5, no. 2,p. 21-29.

Xia, I, R.D. Miller, C.B. Park, and J. Ivanov, 2000, Construction of 2-D vertical shear-wave velocity field by the multichannel analysis of surface wave technique: Proceedings of Symposium on the Application of Geophysics to Engineering Environmental Problems (SAGEEP 2000), Arlington, Va., p.1197-1206.

Xia, J., RD. Miller, and C.B. Park, 2000, Advantages of ca1culating shear-wave velocity from surface waves with higher modes [Exp. Abs.]: Soc. Explor. Geophys.,p.1295-1298.

Xia, I, Miller, R.D., and C.B. Park, 1999a, Estimation of near-surface shear-wave velo city by inversion of Rayleigh waves: Geophysics, v. 64, no. 3, p.691-700.

Xia, I, R.D. Miller, C.B. Park, IA. Hunter, and I.B. Harris, 1999, Evaluation of the MASW technique in unconsolidated sediments [Exp. Abs.]: Soc. Explor. Geophys., p. 437-440.

Xia, I., R.D. Miller, C.B. Park, E. Wightman, and R. Nigbor, 1999, A pitfall in shallowshear-waverefraction surveying [Exp. Abs.]: Soc. Explor. Geophys., p. 508-51 I.

Yilmaz, O., 1987, Seismic data processing: Doherty, S. M., Ed.: Investigations in Geophysics, no. 2, Soc. Of Expl. Geophys.

COMUNE DI LEONESSA PROVINCIA DI RIETI REGIONE LAZIO

PLESSO SCOLASTICO DI LEONESSA SCUOLE DELL'INFANZIA, PRIMARIA, SECONDARIA DI PRIMO GRADO E PALESTRA

ADEGUAMENTO SISMICO SCUOLA PRIMARIA

PROVA H/V - 1

per la determinazione della frequenza di risonanza fondamentale del terreno tramite misure tromografiche di rumore sismico

Committente: COMUNE di LEONESSA

Dott. Geol. FRANCESCO CHIARETTI

COMUNE di LEONESSA (RI)

ADEGUAMENTO SISMICO SCUOLA PRIMARIA DI LEONESSA

PROVA H/V PER LA DETERMINAZIONE DELLA FREQUENZA DI RISONANZA FONDAMENTALE DEL TERRENO TRAMITE MISURE TROMOGRAFICHE DI RUMORE SISMICO

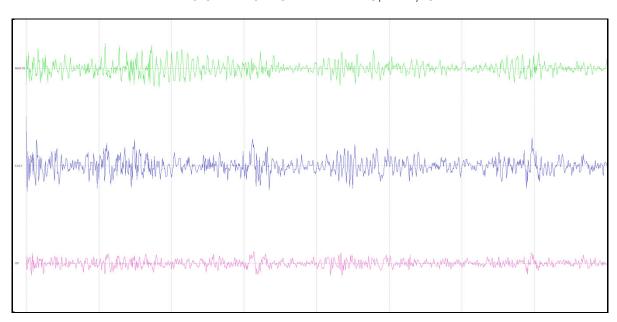
Strumento: TRZ-0190/01-12

Formato dati: 16 byte Fondo scala [mV]: n.a.

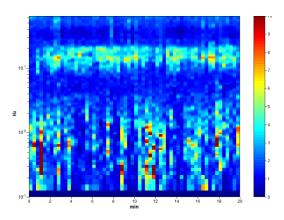
Inizio registrazione: 07/02/17 18:12:24 Fine registrazione: 07/02/17 18:32:24

Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

Dato GPS non disponibile

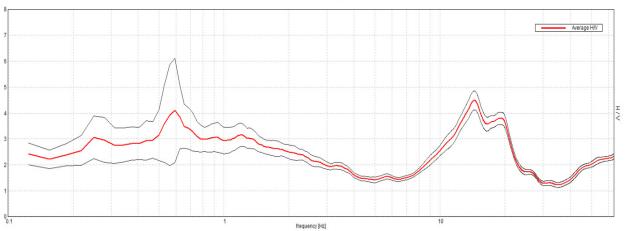

Durata registrazione: 0h20'00". Analisi effettuata sull'intera traccia.

Freq. campionamento: 128 Hz Lunghezza finestre: 20 s

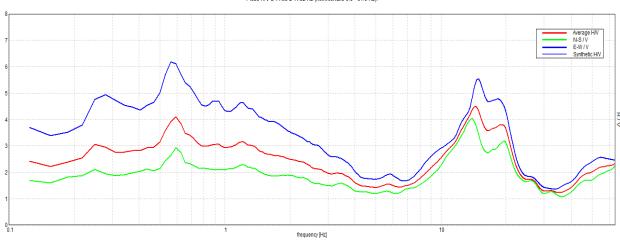

Tipo di lisciamento: Triangular window

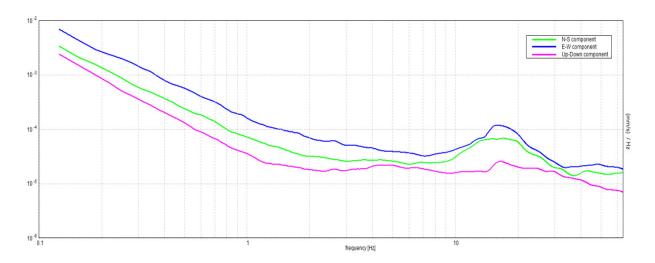
Lisciamento: 10%

REGISTRAZIONI SPETTRALI N-S, E-W, U/D



SERIE TEMPORALE H/V


RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE (H/V)



RAPPORTI SPETTRALI H/V; N-S/V; E-W/V

Picco H/V a 14.38 \pm 11.52 Hz (nell'intervallo 0.0 - 64.0 Hz).

SPETTRI DELLE SINGOLE COMPONENTI

Picco H/V a 14.38 ± 11.52 Hz (nell'intervallo 0.0 - 64.0 Hz).

•	una curva H/V affidabile vrebbero risultare soddisfatti]		
f ₀ > 10 / L _w	14.38 > 0.50	OK	
$n_c(f_0) > 200$	17250.0 > 200	OK	
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$	Superato 0 volte su 691	OK	
	er un picco H/V chiaro 6 dovrebbero essere soddisfatti]		
Esiste f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	9.156 Hz	OK	
Esiste f ⁺ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	22.313 Hz	OK	
A ₀ > 2	4.49 > 2	OK	
$f_{\text{picco}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.80134 < 0.05		NO
$\sigma_{\rm f} < \varepsilon({\sf f}_0)$	11.51924 < 0.71875		NO
$\sigma_{A}(f_0) < \theta(f_0)$	0.3635 < 1.58	OK	

L _w	lunghezza della finestra
n_w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f_0	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \epsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f -	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^-) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
	essere moltiplicata o divisa
$\sigma_{\text{logH/V}}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

	Va	llori di soglia per	$\sigma_f e \sigma_A(f_0)$		
Intervallo di freq. [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 – 2.0	> 2.0
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0) \text{ per } \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

INTERPRETAZIONE DELLA PROVA

Il picco H/V è considerabile come frequenza di risonanza del sito in quanto è naturale, pur se 2 criteri Sesame non sono rispettati. In corrispondenza di tale picco, infatti, è evidente la forma spettrale "a occhio" ("a ogiva"), determinata da un minimo locale della componente verticale, che è quella che caratterizza i picchi H/V di origine naturale.

A livello stratigrafico-sismico, quindi, la prova H/V è interpretabile come indicativa di un sito in cui è presente, a debole profondità, un livello con forte contrasto di impedenza sismica interpretabile come bedrock sismico locale.

COMUNE DI LEONESSA PROVINCIA DI RIETI REGIONE LAZIO

PLESSO SCOLASTICO DI LEONESSA SCUOLE DELL'INFANZIA, PRIMARIA, SECONDARIA DI PRIMO GRADO E PALESTRA

MESSA IN SICUREZZA E ADEGUAMENTO SISMICO SCUOLA PRIMARIA

PROVA H/V - 2

per la determinazione della frequenza di risonanza fondamentale del terreno tramite misure tromografiche di rumore sismico

Committente: COMUNE di LEONESSA

Dott. Geol. FRANCESCO CHIARETTI

COMUNE di LEONESSA (RI)

ADEGUAMENTO SISMICO SCUOLA PRIMARIA DI LEONESSA

PROVA H/V PER LA DETERMINAZIONE DELLA FREQUENZA DI RISONANZA FONDAMENTALE DEL TERRENO TRAMITE MISURE TROMOGRAFICHE DI RUMORE SISMICO

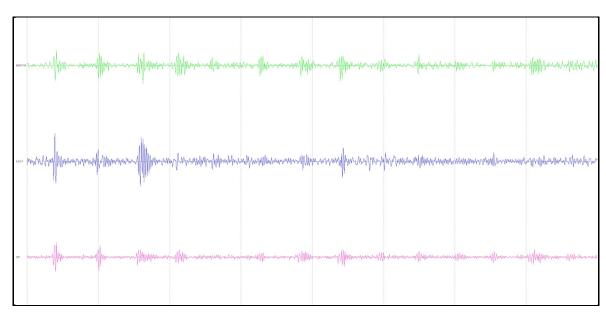
Strumento: TRZ-0190/01-12

Formato dati: 16 byte Fondo scala [mV]: n.a.

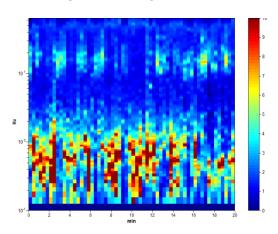
Inizio registrazione: 07/02/17 15:37:49 Fine registrazione: 07/02/17 15:57:49

Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

Dato GPS non disponibile

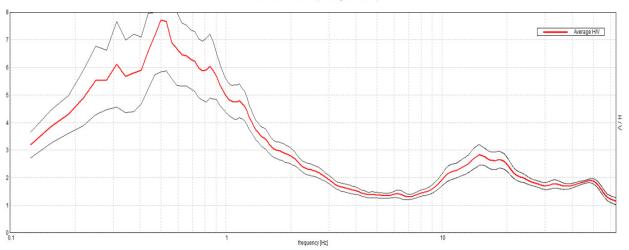

Durata registrazione: 0h20'00". Analisi effettuata sull'intera traccia.

Freq. campionamento: 128 Hz Lunghezza finestre: 20 s

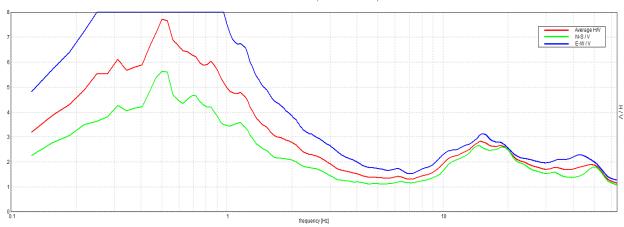

Tipo di lisciamento: Triangular window

Lisciamento: 10%

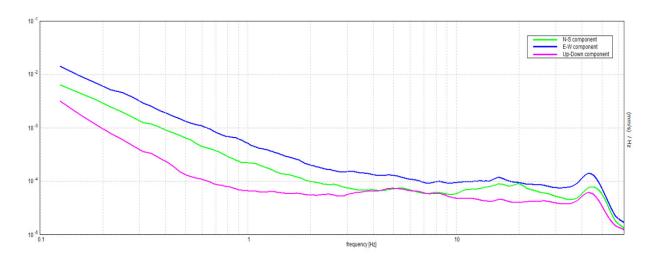
REGISTRAZIONI SPETTRALI N-S, E-W, U/D



SERIE TEMPORALE H/V


RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE (H/V)

Max. H/V at 14.91 ± 11.87 Hz. (In the range 2.0 - 20.0 Hz).



RAPPORTI SPETTRALI H/V; N-S/V; E-W/V

Picco H/V a 14.91 ± 11.87 Hz (nell'intervallo 2.0 - 20.0 Hz).

SPETTRI DELLE SINGOLE COMPONENTI

Picco H/V a 14.91 ± 11.87 Hz (nell'intervallo 0.0 - 20.0 Hz).

• • • • • • • • • • • • • • • • • • •	una curva H/V affidabile vrebbero risultare soddisfatti]			
f ₀ > 10 / L _w	14.91 > 0.50	OK		
$n_c(f_0) > 200$	17887.5 > 200	OK		
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$	$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$ Superato 0 volte su 716 OK			
	er un picco H/V chiaro 6 dovrebbero essere soddisfatti]			
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	7.813 Hz	OK		
Esiste f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	56.406 Hz	OK		
A ₀ > 2	2.82 > 2	OK		
$f_{\text{picco}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.79621 < 0.05		NO	
$\sigma_{\rm f} < \varepsilon({\sf f}_0)$	11.86846 < 0.74531	_	NO	
$\sigma_{A}(f_0) < \theta(f_0)$	0.3724 < 1.58	OK		

L _w	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f_0	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \varepsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f -	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^-) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
, ,	essere moltiplicata o divisa
$\sigma_{\text{logH/V}}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

	Va	alori di soglia per	$\sigma_f e \sigma_A(f_0)$		
Intervallo di freq. [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0) \text{ per } \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

INTERPRETAZIONE DELLA PROVA

Il picco H/V è considerabile come frequenza di risonanza del sito in quanto è naturale, pur se 2 criteri Sesame non sono rispettati. In corrispondenza di tale picco, infatti, è evidente la forma spettrale "a occhio" ("a ogiva"), determinata da un minimo locale della componente verticale, che è quella che caratterizza i picchi H/V di origine naturale.

A livello stratigrafico-sismico, quindi, la prova H/V è interpretabile come indicativa di un sito in cui è presente, a debole profondità, un livello con forte contrasto di impedenza sismica interpretabile come bedrock sismico locale.

COMUNE DI LEONESSA PROVINCIA DI RIETI REGIONE LAZIO

PLESSO SCOLASTICO DI LEONESSA SCUOLE DELL'INFANZIA, PRIMARIA, SECONDARIA DI PRIMO GRADO E PALESTRA

MESSA IN SICUREZZA E ADEGUAMENTO SISMICO SCUOLA PRIMARIA

PROVA H/V - 3

per la determinazione della frequenza di risonanza fondamentale del terreno tramite misure tromografiche di rumore sismico

Committente: COMUNE di LEONESSA

Dott. Geol. FRANCESCO CHIARETTI

Studio di Vulnerabilità sismica degli edifici del Plesso Scolastico di Leonessa (RI)

COMUNE di LEONESSA (RI)

ADEGUAMENTO SISMICO SCUOLA PRIMARIA DI LEONESSA

PROVA H/V PER LA DETERMINAZIONE DELLA FREQUENZA DI RISONANZA FONDAMENTALE DEL TERRENO TRAMITE MISURE TROMOGRAFICHE DI RUMORE SISMICO

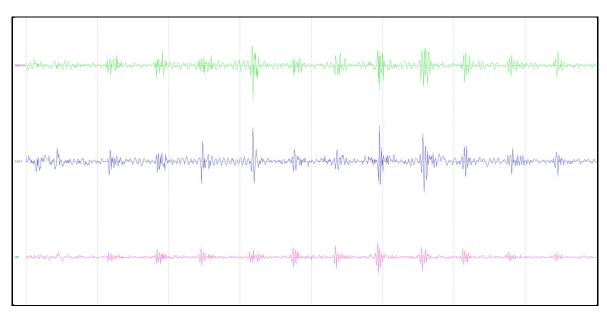
Strumento: TRZ-0190/01-12

Formato dati: 16 byte Fondo scala [mV]: n.a.

Inizio registrazione: 07/02/17 16:00:39 Fine registrazione: 07/02/17 16:20:39

Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

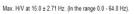
Dato GPS non disponibile

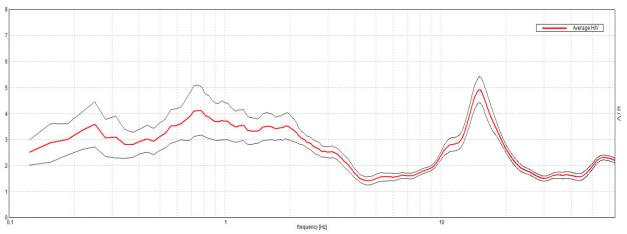

Durata registrazione: 0h20'00". Analisi effettuata sull'intera traccia.

Freq. campionamento: 128 Hz Lunghezza finestre: 20 s

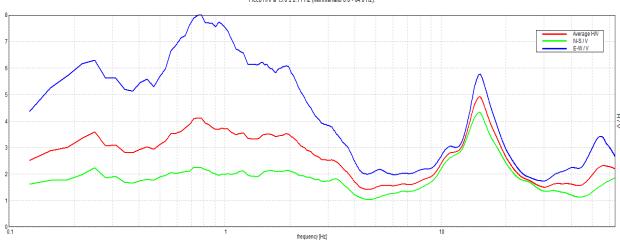
Tipo di lisciamento: Triangular window

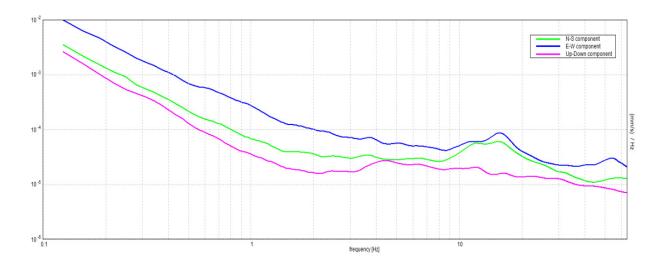
Lisciamento: 10%


REGISTRAZIONI SPETTRALI N-S, E-W, U/D



SERIE TEMPORALE H/V


RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE (H/V)



RAPPORTI SPETTRALI H/V; N-S/V; E-W/V

Picco H/V a 15.0 \pm 2.71 Hz (nell'intervallo 0.0 - 64.0 Hz).

SPETTRI DELLE SINGOLE COMPONENTI

Picco H/V a 15.0 ± 2.71 Hz (nell'intervallo 0.0 - 64.0 Hz).

•	una curva H/V affidabile vrebbero risultare soddisfatti]			
f ₀ > 10 / L _w	15.00 > 0.50	OK		
$n_c(f_0) > 200$	18000.0 > 200	OK		
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$	$\sigma_{A}(f) < 2 \text{ per } 0.5f_{0} < f < 2f_{0} \text{ se } f_{0} > 0.5Hz$ Superato 0 volte su 721 OK			
	er un picco H/V chiaro 6 dovrebbero essere soddisfatti]			
Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$	10.125 Hz	OK		
Esiste f^+ in $[f_0, 4f_0] A_{H/V}(f^+) < A_0 / 2$	20.656 Hz	OK		
A ₀ > 2	4.91 > 2	OK		
$f_{\text{picco}}[A_{\text{H/V}}(f) \pm \sigma_{\text{A}}(f)] = f_0 \pm 5\%$	0.18081 < 0.05		NO	
$\sigma_{\rm f} < \varepsilon({\sf f}_0)$	2.71208 < 0.75		NO	
$\sigma_{A}(f_0) < \theta(f_0)$	0.497 < 1.58	OK		

L _w	lunghezza della finestra
$n_{\rm w}$	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f_0	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \varepsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f -	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^-) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
	essere moltiplicata o divisa
$\sigma_{\text{logH/V}}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

	Va	alori di soglia per	$\sigma_f e \sigma_A(f_0)$		
Intervallo di freq. [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0) \text{ per } \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

INTERPRETAZIONE DELLA PROVA

Il picco H/V è considerabile come frequenza di risonanza del sito in quanto è naturale, pur se 2 criteri Sesame non sono rispettati. In corrispondenza di tale picco, infatti, è evidente la forma spettrale "a occhio" ("a ogiva"), determinata da un minimo locale della componente verticale, che è quella che caratterizza i picchi H/V di origine naturale.

A livello stratigrafico-sismico, quindi, la prova H/V è interpretabile come indicativa di un sito in cui è presente, a debole profondità, un livello con forte contrasto di impedenza sismica interpretabile come bedrock sismico locale.

COMUNE DI LEONESSA PROVINCIA DI RIETI REGIONE LAZIO

PLESSO SCOLASTICO DI LEONESSA SCUOLE DELL'INFANZIA, PRIMARIA, SECONDARIA DI PRIMO GRADO E PALESTRA

MESSA IN SICUREZZA E ADEGUAMENTO SISMICO SCUOLA PRIMARIA

PROVA H/V - 4

per la determinazione della frequenza di risonanza fondamentale del terreno tramite misure tromografiche di rumore sismico

Committente: COMUNE di LEONESSA

Dott. Geol. FRANCESCO CHIARETTI

COMUNE di LEONESSA (RI)

ADEGUAMENTO SISMICO SCUOLA PRIMARIA DI LEONESSA

PROVA H/V PER LA DETERMINAZIONE DELLA FREQUENZA DI RISONANZA FONDAMENTALE DEL TERRENO TRAMITE MISURE TROMOGRAFICHE DI RUMORE SISMICO

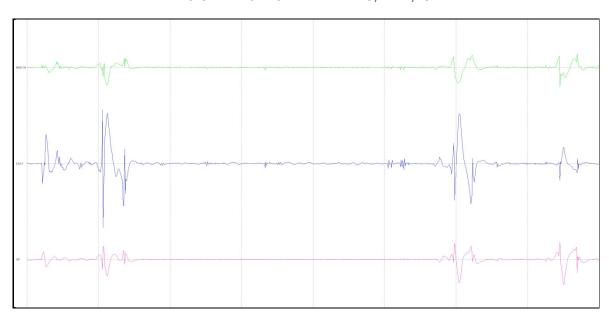
Strumento: TRZ-0190/01-12

Formato dati: 16 byte Fondo scala [mV]: n.a.

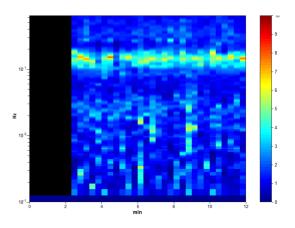
Inizio registrazione: 07/02/17 16:47:23 Fine registrazione: 07/02/17 16:59:23

Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

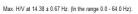
Dato GPS non disponibile

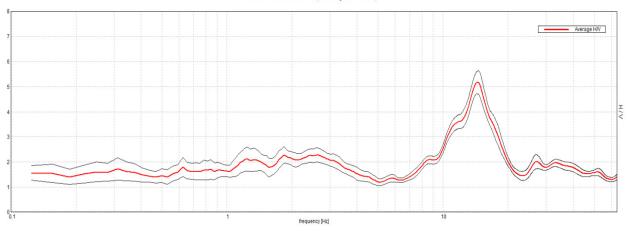

Durata registrazione: 0h12'00". Analizzato 81% tracciato (selezione manuale)

Freq. campionamento: 128 Hz Lunghezza finestre: 20 s

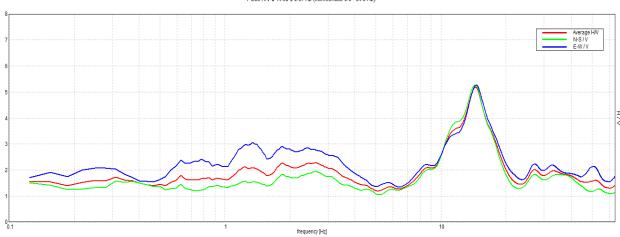

Tipo di lisciamento: Triangular window

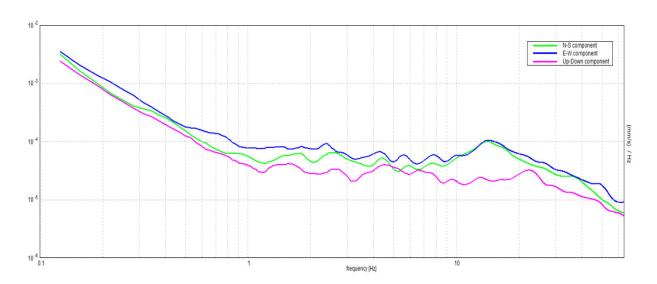
Lisciamento: 10%


REGISTRAZIONI SPETTRALI N-S, E-W, U/D



SERIE TEMPORALE H/V


RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE (H/V)



RAPPORTI SPETTRALI H/V; N-S/V; E-W/V

Picco H/V a 14.38 ± 0.67 Hz (nell'intervallo 0.0 - 64.0 Hz).

SPETTRI DELLE SINGOLE COMPONENTI

Picco H/V a 14.38 ± 0.67 Hz (nell'intervallo 0.0 - 64.0 Hz).

Criteri per una curva H/V affidabile [Tutti 3 dovrebbero risultare soddisfatti]					
f ₀ > 10 / L _w	14.38 > 0.50	OK			
$n_c(f_0) > 200$	8337.5 > 200	OK			
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$	Superato 0 volte su 691	OK			
<u> </u>	er un picco H/V chiaro 6 dovrebbero essere soddisfatti]				
Esiste f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	10.063 Hz	OK			
Esiste f ⁺ in [f ₀ , 4f ₀] $A_{H/V}(f^+) < A_0 / 2$	18.781 Hz	OK			
A ₀ > 2	5.17 > 2	OK			
$f_{\text{picco}}[A_{\text{H/V}}(f) \pm \sigma_{A}(f)] = f_0 \pm 5\%$ 0.04652 < 0.05					
$\sigma_{\rm f} < \varepsilon({\sf f}_0)$	0.66875 < 0.71875	OK			
$\sigma_{A}(f_0) < \theta(f_0)$	0.4488 < 1.58	OK			

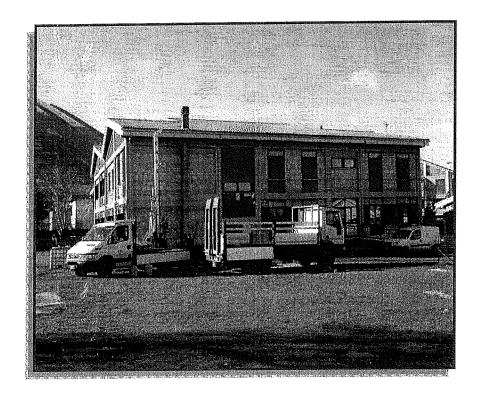
L _w	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f_0	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \varepsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f -	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f^{-}) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
,,,	essere moltiplicata o divisa
$\sigma_{logH/V}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

	Va	alori di soglia per	$\sigma_f e \sigma_A(f_0)$		
Intervallo di freq. [Hz]	< 0.2	0.2 - 0.5	0.5 – 1.0	1.0 - 2.0	> 2.0
ε(f ₀) [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58
$\log \theta(f_0) \text{ per } \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20

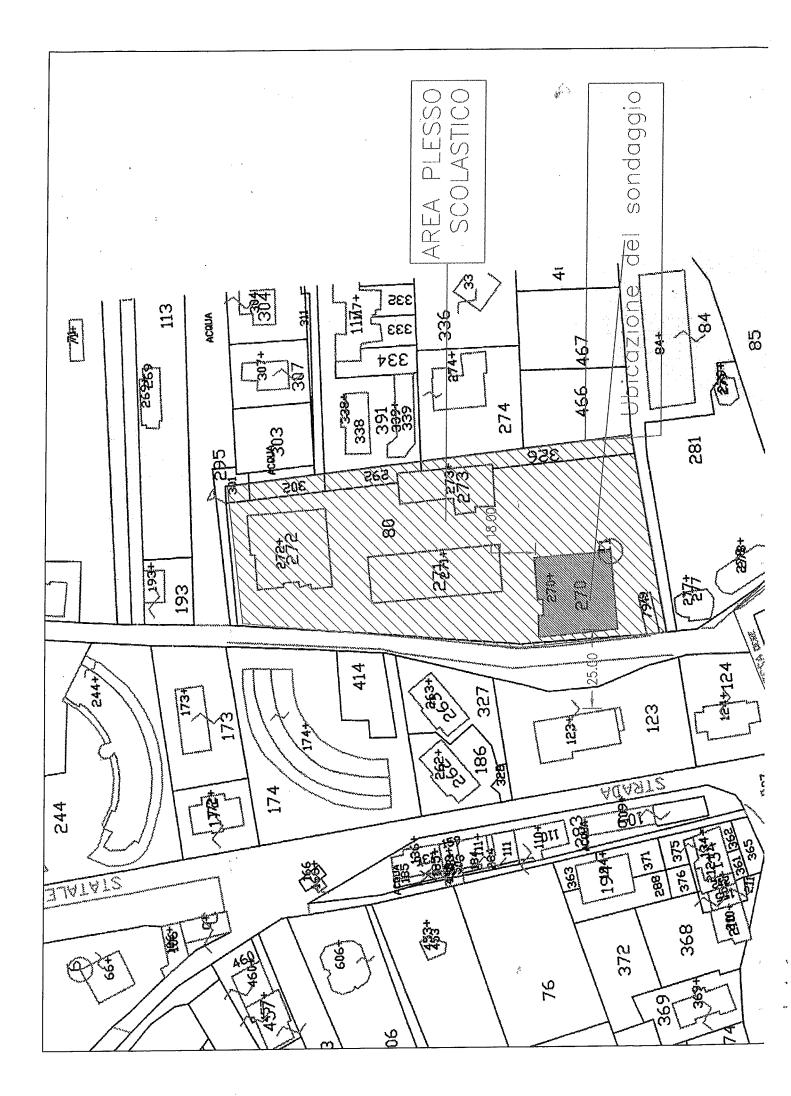
INTERPRETAZIONE DELLA PROVA

Il picco H/V, con tutti i criteri Sesame rispettati, è considerabile come frequenza di risonanza del sito in quanto è naturale. In corrispondenza di tale picco, infatti, è evidente la forma spettrale "a occhio" ("a ogiva"), determinata da un minimo locale della componente verticale, che è quella che caratterizza i picchi H/V di origine naturale.

A livello stratigrafico-sismico, quindi, la prova H/V è interpretabile come indicativa di un sito in cui è presente, seppure a notevole profondità, un livello con forte contrasto di impedenza sismica interpretabile come bedrock sismico locale.

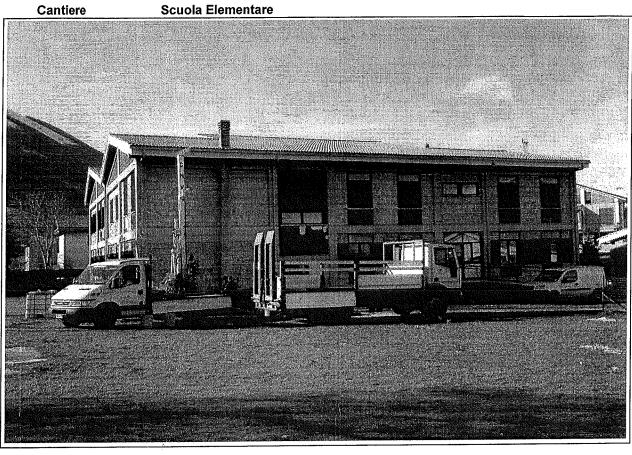


Laboratorio Geotecnico - Prove in sito


LABORATORIO AUTORIZZATO DAL MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI PRESIDENZA DEL CONSIGLIO
SUPERIORE DEI LAVORI PUBBLICI - SERVIZIO TECNICO CENTRALE - D.P.R. n. 246/93, Art. 8 - Circolare n. 349/99
Concessione N. 52497 - SETTORE A (prove di laboratorio sui terreni) e SETTORE C (prove in sito)

INDAGINI GEOGNOSTICHE ED ANALISI DI LABORATORIO GEOTENCICO PLESSO SCOLASTICO – LEONESSA

Committente	Data esecuzione	V.A. sito	V.A.Lab
COMUNE DI LEONESSA	Gennaio 2010	1096	993

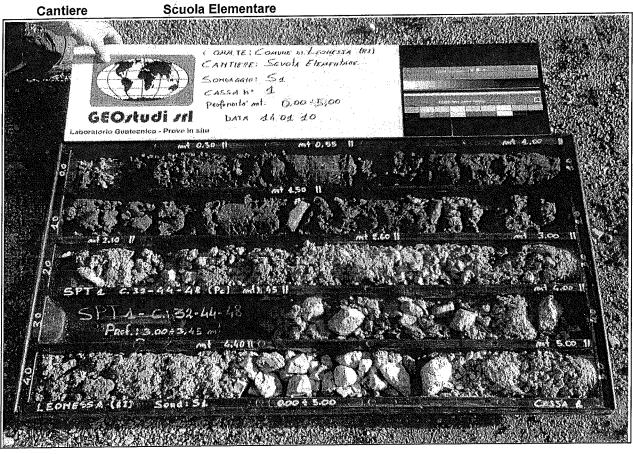


				Scala metrica	0,0	2,0	3.0	4,0	5,0	6,0	7.0	8,0	0.6	10,0	11.0	12,0	13,0	14,0	15,0	16,0	17,0	18,0	19,0	20,0
1096_S1	1096	4227	15/1/10	% carotaggio	0 50 100				and an angle of the Control															
Codice	V.A. n	Cert	data	Produzione	13/01/10 INIZIO PERFORAZIONE														14/01/10 FINE PERFORAZIONE					OH Party CHO
13/01/10 - 14/01/10			-	Rivestimento		<2⊢m													a_					
3/01/10		l _m			_		ш ош <u>в</u>	E 0	w }-	- □ - ∢	4 to the							-	+					\parallel
	IICATE	JNICA	-	Cassetta n. Profondita' battute Prof. Hvestimento Sist. di perforazione	000	1,50	3,00	4,50		6,00	7,50		9,00	10,00		12,00	13.50							
aaggo	NON COMUNICATE	COM	009,	Profondita' battute	1	<u>.L</u>				L														\parallel
Uata inizio/iine sondaggio	NON	Š	S	Cassetta n.							~					m								Ħ
nizio/ii			ice	RQD %					1										-					+
Data	41	caforo	operatr	Quota falda dal p.c.			misura	del 14/01/10	8,4	*				ealtai			ing a state of	a de la composición						\parallel
	Coordinate	Quota boc	Macchina operatrice	3NOIZAJ1AT2NI																				
_				TGSN			82					<u> </u>						凝						
				Numero di Colpi			844					30 50/12cm						44 50/10 cm						
	essa			TGS evo19 (Py - pc)			3,00 SPT 1 Pc 3,45					SPT 2 RV 11.25						14,80 44 SPT 3 50/10 cm	18,23					
	Comune di Leonessa	Scuole Elementari	(F)	Nimanegglati		······································	- Level		5.80 CR1	S/8					11.60 CR2	9,00								Ħ
)	une d	le Elen	Leonessa (RI)	Campioni																				H
	E CO	Scno	Leon	inoiqmsO isdrutalbal																,,				
:	nte			tseT ensV	2 2 2 2 2 2	2222	22222	2 2 2 2	इइइइ	2222	5555.	2222	말말말	1999	2222	2222	2222	2222	2					
	Committente	Progetto:	calita':	Pocket Kg/cm²	2 2 2 2 2 2	2222	2222	2222	5555.	2222	5555.	2222	2222	2222		2222	2222	2223	2					
	රි	Pro	Ě			1																		\parallel
istero delle Infrastrutture e Trasporti n° 52497 ai sensi dell'Art.n'8 del D.P.R. n° 248/93 per prove di	laboratorio (Settore A) e prove in sito (Settore C)	Via San Salvador 3 - 00040 Pomezia (Roma)	l el/rax u691603360-0691603317 - email GEOSTUDI@fastwebnet_it	Descrizione litostratigrafica-geotecnica	0,00 - 1,70 m: Sabbia ghiaiosa con argilla e limo, umida, colore marrone rossastro. La componente grossolan risulta eterometrica fino alle dimensioni della ghiala grossolana , max, 2-3 cm, da subarrotondata a subangolare, di natura prevalentemente carbonatica, colore marrone chiaro.			1,70 - 15,00 m; Sabbia medio grossolana con ciottoli, umida, motto addensata, colore marroncino dilarc-biancastra a tratti ossidata. La componente drossolana risulta fortemente eteromentica mars. 5, cm						n de la companya de l	n na	and the second s								
Ministero	Settore A)	alvador 3	9160336	sigolodmi2	111			11/	W.															Note:
essione	atorio (\$	San Se	ax 06	Profondita' mt.	8	1,70		_		proposition of	4	Investment lands	۹	procession of the				physical Science	Fondo Foro		<u> </u>			20,00
lě	labo	Z Z	<u>ē</u>	Scala metrica	0,0	2,0	3,0	0,4	9,0	6,0	7,0	0,8	0,8	10,0	11,0	12,0	13,0	14,0	15,0	ρ 6	17,0	18,0	19,0	20,0

Laboratorio Geotecnico - Indagini Geognostiche e Strutturali - Topografia - Collaudi

Committente

Comune di Leonessa (RI) Scuola Elementare Sondaggio \$1


SONDAGGIO S1 - POSTAZIONE

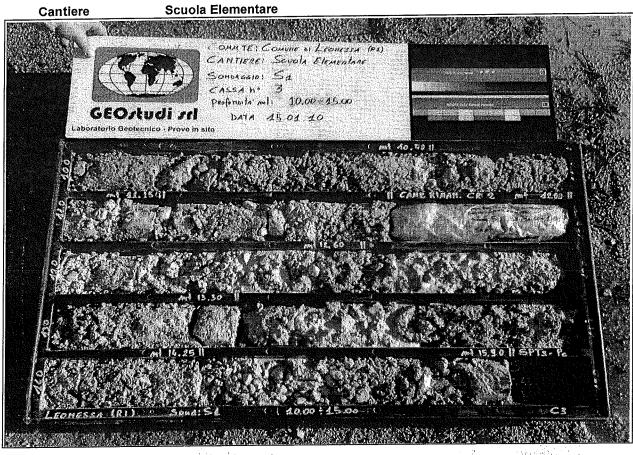
Laboratorio Geotecnico - Indagini Geognostiche e Strutturali - Topografia - Collaudi

Committente

Comune di Leonessa (RI)

Sondaggio S1

'CASSETTA N°1 DA 0,00 A 5,00m


'CASSETTA N°2 DA 5,00 A 10,00m

Laboratorio Geotecnico - Indagini Geognostiche e Strutturali - Topografia - Collaudi

Committente

Comune di Leonessa (RI)

Sondaggio S1

'CASSETTA N°3 DA 10,00 A 15,00m

COMMITTENTE		Comune di Leonessa	lessa															
CANTIERE	_	Comune di Leonessa	ıessa															
DATI RIASSI	UNTIVI PRO	DATI RIASSUNTIVI PROVE DI LABORATORIO:	ATORIO:						9					*	3			
Data:	25/0	25/01/2010																
Identificative commisses	i i i i i i i i i i i i i i i i i i i			Ргор	Proprieta' fisiche	che	Limit	Limiti Atterberg	6.	,	Analisi granulometrica	ulometrica		Prova di taglio diretto Picco	i taglio Picco	Prova di taglio diretto Residuo	taglio	CLASS
			Descrizione terreno	>	Wn	۲s	4	5	IP Ghi	Ghiaia (60 2 mm) (2	Sabbia (2,0-0,06 mm)	Limo (0,06-0,002 mm)	Argilla (<0,002mm)	ັບ		ئن		SOSI
٧A	Campione	m da p.c.		kN/m³	%	ı	%	%	%	%	%	%	%	kPa		kPa		
993-1	S1 CR1	5,60-6,00	Ghiaia sabbiosa limosa argillosa di colore da marrone giallastro chiaro (10YR 6/4) e marrone giallastro (10YR 5/4). La ghiaia è di matura calcarea, da subarrotondata a subangolare, spesso a contatto. Addensata, frazione fine umida e poco plastica. Reagente all'HCi.	21,05	12,3	2,67	25	17	ω	54,0	24,8	11,0	10,2			0,0	34,8	29
993-2	S1 CR2	11,60-	Ghiaia con sabbia limosa debolmente argillosa di colore da grigio chiaro a marrone molto chiaro (10YR 7/2 - 7/3). La ghiaia è di natura calcarea, da arrotondata a subangolare, spesso a contatto. Addensata, frazione fine umida e poco plastica.	20,32	2,7	2,69	18	5	φ	46,7	31,4	12,9	0,6			0	33	SC-SM

Via San Salvador 3 00040 Pomezia (Rm) Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.it

Concessione Ministero delle infrastrutture e Trasporti n° 52497 ai sensi dell'Art. 8 del DPR n°246/93 Prove di laboratorio sui terreni (settore A) - Prove in sito (settore C)

993/1

N.VERB.ACCETT./CAMP.

Data ricevimento

Data apertura

19/01/2010

28475 / AP CERTIFICATO N.

25/01/2010 Data

Data prelievo

15/01/2010 20/01/2010 Data inizio prova Data fine prova

1/1 Pag.

COMMITTENTE

COMUNE DI LEONESSA

COMMESSA

002/2010

CANTIERE

Comune di Leonessa

Campione

CR1

Profondità [m] 5,60-6,00

Sondaggio

DIAMETRO INT.: cm

LUNGHEZZA: cm

FUSTELLA

Sacchetto plastica

(ASTM D 2488/93)

APERTURA CAMPIONE

PROGRAMMA PROVE APERTURA CAMPIONE RIMANEGGIATO PESO SPECIFICO DEI GRANI (ASTM D 854-92) CONTENUTO NATURALE DI ACQUA (ASTM D 2216-92) PESO DI VOLUME LIMITI DI ATTERBERG

GRANULOMETRIA

CLASSIFICA U.S.C.S.

TAGLIO DIRETTO C.D.

DESCRIZIONE VISUALE

Ghiaia sabbiosa limosa argillosa di colore da marrone giallastro chiaro (10YR 6/4) e marrone giallastro (10YR 5/4). La ghiaia è di natura calcarea, da subarrotondata a subangolare, spesso a contatto. Addensata, frazione fine umida e poco plastica. Reagente all'HCI.

DESCRIZIONE STRATIGRAFICA			[cm]	POCKET PENETR. [kg/cm²]	TOR VANE [kg/cm²]		[cm]	PROVINI
	0	0				0		
	10	10				10	10 -	TD1
Ghiaia sabbiosa limosa argillosa di colore da marrone giallastro chiaro e marrone giallastro. La ghiaia è di natura calcarea, da subarrotondata a subangolare, spesso a contatto. Addensata,	20	20				20	20 –	—TD2
frazione fine umida e poco plastica.	30	30				30	30 –	_TD3
	40	40				40		
	50	50				50		
	60	60				60		
	70	70				70		
	80	80				80		
	90	90				90		
	100	100				100	l	

QUALITA' DEL CAMPIONE

NOTE Prova di taglio diretto eseguita su provini ricostituiti alla densità e umidità naturale, su materiale vagliato al 4,76 mm.

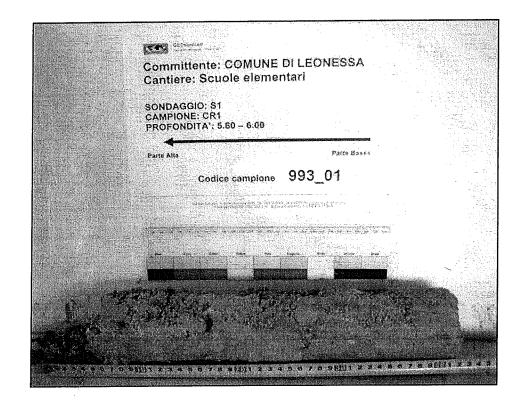
Lo sperimentatore (Dott. Alessandro Miraldi)

GEOSTUDI sri

Laboratorio geotecnico - Prove in sito

LABORATORIO AUTORIZZATO DAL MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI PRESIDENZA DEL CONSIGLIO SUPERIORE DEI LAVORI PUBBLICI – SERVIZIO TECNICO CENTRALE - D.P.R. n. 246/93, Art. 8 - Circolare n. 349/99 Concessione N. 52497 – SETTORE A (prove di laboratorio sui terreni) e SETTORE C (prove in sito)

Commessa:


76_07

Cantiere:

Comune di Leonessa

Committente:

Comune di Leonessa

SONDAGGIO:

S1

CAMPIONE:

CR1

PROFONDITA' (m)

5,60-6,00

Via San Salvador 3 00040 Pomezia (Rm)

Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.it

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 ai sensi dell'Art. 8 del DPR n°246/93

Prove di laboratorio sui terreni (settore A) - Prove in sito (settore C)

993/1 N.VERB.ACCETT./CAMP.

Data ricevimento Data prelievo

Data apertura

19/01/2010 15/01/2010 20/01/2010 CERTIFICATO N. Data inizio prova

Data fine prova

25/01/2010 Data

28476 / FV

1/1 Pag.

002/2010

COMMITTENTE

Sondaggio

COMUNE DI LEONESSA

Comune di Leonessa CANTIERE

Campione CR1

Profondità [m] 5,60-6,00

COMMESSA

CARATTERISTICHE FISICHE E VOLUMETRICHE

PESO SPECIFICO DEI GRANI (AS	STM D 854	-92)	9									
Massa picn.+acqua+terr.secco [g]	481,10	899,72										
Temperatura [°C]	17,90	17,80										
Massa picnometro + acqua [g]	431,44	813,82										
Massa terreno secco [g]	79,50	137,17										
Peso specifico dei grani	2,66	2,68										
Peso specifico dei grani medio	2,0	57										
PROVA EFFETTUATA	TD1	TD2	TD3									
CONTENUTO NATURALE DI ACC	QUA (ASTI	M D 2216-	92)		GRA	NDEZZ	E INIZI	ALI			ł	
Massa conten.+terr.umido [g]	70,60	82,61	89,77									
Massa conten.+terr.secco [g]	65,00	75,65	82,33									
Massa contenitore [g]	19,57	19,94	20,42									
Contenuto d'acqua (%)	12,3	12,5	12,0									
PESO DI VOLUME UMIDO (BS 13	77(90) PA	RT 2)										
Lato / diametro provino [mm]	D 60,52	L60,14	D 60,51									
Altezza provino [mm]	19,97	19,71	19,71									
Massa fustella + provino [g]	207,15	205,93	208,28									
Massa fustella [g]	52,49	52,18	51,76									
Peso di volume umido [kN/m³]	20,74	21,15	21,27									
CARATTERISTICHE DERIVATE	il	<u> </u>						,		,		·
Peso di volume del secco [kN/m³]	18,46	18,80	18,99									
Indice dei vuoti	0,418	0,393	0,379									
Porosita (%)	29,49	28,19	27,48									
Grado di saturazione	78,69	84,96	84,66									
			201		GRA	ANDEZ	ZE FIN	A <i>LI</i>				
CONTENUTO NATURALE DI ACC	QUA (AST	VI D 2216-	92)	1			r				<u> </u>	
Massa conten.+terr.umido [g]	11	247,05	215,93									
Massa conten.+terr.secco [g]	226,94	a ·	203,01									
Massa contenitore [g]	91,94	92,34	96,50									
Contenuto d'acqua (%)	13,8	12,9	12,1					<u> </u>			l	
PESO DI VOLUME UMIDO (BS 13			T-10.06	í —			1	ſ				
Altezza provino [mm]	19,78	19,17	18,96		1							
Massa fustella + provino [g]	207,15	205,93	208,28									
Massa fustella [g]	52,49	52,18	51,76									
Peso di volume umido [kN/m³]	21,20	21,83	22,14				ŀ					
CARATTERISTICHE DERIVATE	·		<u> </u>		1		i -		r			1
Peso di volume del secco [kN/m³]	18,64	19,34	19,74									
Indice dei vuoti	0,405	0,354	0,326									
Porosita (%)	28,81	26,15	24,60									
Grado di saturazione	90,74	97,28	99,28									

Lo sperimentatore (Dott. Alessandro Miraldi)

GEO*r*tudi *sr*i

Via San Salvador 3 00040 Pomezia (Rm) Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.it

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 al sensi dell'Art. 8 del DPR n°246/93

Prove di laboratorio sui terreni (settore A) - Prove in sito (settore C)

28477 / IP 25/01/2010 993/1 CERTIFICATO N. Data 19/01/2010 N.VERB.ACCETT./CAMP. Data ricevimento 21/01/2010 15/01/2010 Data inizio prova

Data prelievo 1/1 20/01/2010 Data fine prova 22/01/2010 Pag. Data apertura

COMMITTENTE

COMUNE DI LEONESSA

002/2010 COMMESSA

CANTIERE

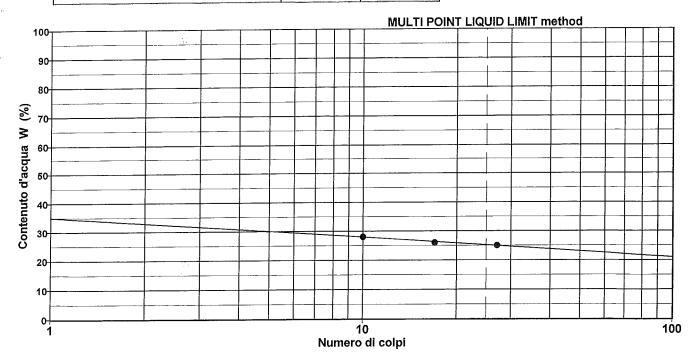
Comune di Leonessa

Sondaggio

S1

Campione CR1

Profondità [m] 5,60-6,00


LIMITI DI ATTERBERG ASTM D 4318/84

Descrizione del terreno

Ghiaia sabbiosa limosa argillosa.

LIMITE LIQUIDO prova n.	1	2	3	4	5
Numero di colpi	27	17	10	į	
Contenuto d'acqua (%)	25,1 %	26,1 %	28,2 %		

LIMITE PLASTICO prova n.	1	2
Contenuto d'acqua (%)	16,5 %	16,6 %

LIMITE LIQUIDO 25,2 % LL = 16,5 % **LIMITE PLASTICO** LP =

8,7 % **INDICE PLASTICO**

Lo sperimentatore (Dott. Alessandro Miraldi)

N.VERB.ACCETT./CAMP.

GEOrtudi sd

Via San Salvador 3 00040 Pomezia (Rm)

Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.it

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 ai sensi dell'Art. 8 del DPR n° 246/93

Data prelievo

Data apertura

Prove di laboratorio sui terreni (settore A) - Prove in sito (settore C)

993/1

Data ricevimento

19/01/2010 15/01/2010

20/01/2010

28478 / GR CERTIFICATO N. Data inizio prova

Data fine prova

25/01/2010 Data

22/01/2010

25/01/2010

1/1 Pag. 002/2010

COMMITTENTE

COMUNE DI LEONESSA

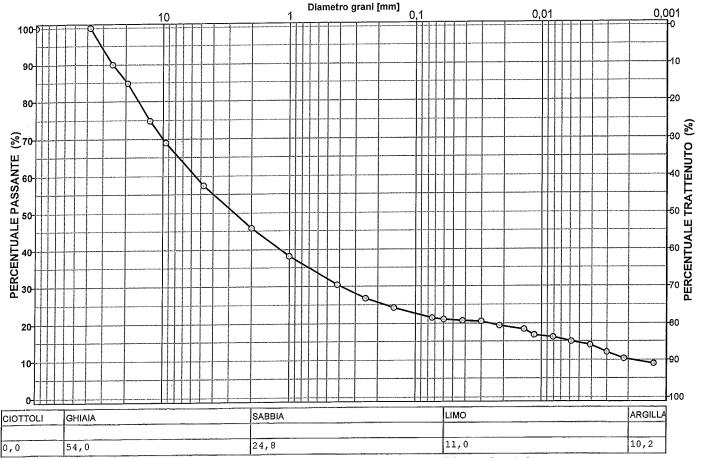
CANTIERE

Comune di Leonessa

Sondaggio

S1

Campione CR1


Profondità [m] 5,60-6,00

COMMESSA

ANALISI GRANULOMETRICA ASTM D422/63 - Class. AGI 1977

Descrizione del terreno

Ghiaia sabbiosa limosa argillosa.

		Analisi per seta	cciatura		Ana	ılisi per sedimen	tazione
Massa mater.	VAGLI	APERTURA	PERC.CUMUL	PERC.CUMUL	DIMENSIONE	PERC.CUMUL	PERC.CUMUL
g 4100,0		SETACC. mm	PASSANTE	TRATTENUTO	GRANULI mm	PASSANTE	TRATTENUTO
0,0	3,0 inch	76,2000	100,00	0,00	0,0598	21,14	78,86
0,0	2.5 inch	63,5000	100,00	0,00	0,0425	20,78	79,22
0,0	1.5 inch	38,1000	100,00	0,00	0,0301	20,43	79,57
405,2	1.0 inch	25,4000	90,12	9,88	0,0216	19,35	80,65
210,5	3/4 inch	19,0500	84,98	15,02	0,0138	18,28	81,72
420,2	1/2 inch	12,7000	74,73	25,27	0,0114	16,85	83,15
239,5	3/8 inch	9,5100	68,89	31,11	0,0081	16,13	83,87
468,3	4 mesh	4,7600	57,47	42,53	0,0058	15,06	84,94
470,9	10 mesh	2,0000	45,99	54,01	0,0041	13,99	86,01
314,3	16 mesh	1,0000	38,32	61,68	0,0030	12,20	87,80
321,4	40 mesh	0,4200	30,48	69,52	0,0021	10,41	89,59
150,1	60 mesh	0,2500	26,82	73,18	0,0013	8,98	91,02
103,5	100 mesh	0,1490	24,30	75,70			
116,1	200 mesh	0,0740	21,46	78,54			
			Í				

NOTE

Lo sperimentatore (Dott. Alessandro Miraldi)

N.VERB.ACCETT./CAMP.

Via San Salvador 3 00040 Pomezia (Rm)
Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.it

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 ai sensi dell'Art. 8 del DPR n°246/93 Prove di laboratorio sul terreni (settore A) - Prove in sito (settore C)

993/1

Data ricevimento

19/01/2010 15/01/2010

CERTIFICATO N. Data inizio prova

28479 / CLU 22/01/2010

25/01/2010 Data

Data prelievo Data apertura

20/01/2010

25/01/2010 Data fine prova

Pag. 1/1 002/2010

COMMITTENTE

COMUNE DI LEONESSA

CANTIERE

Comune di Leonessa

Sondaggio

S1

Campione CR1

Profondità [m] 5,60-6,00

COMMESSA

CLASSIFICAZIONE TERRENO

U.S.C.S. - Unified Soil Classification System ASTM D 2487/93

		Perce	entuale pa	issante	
	Setaccio 76,2 mm		100	%	
	Setaccio 4,76 mm		57	%	
	Setaccio 0,074 mm		21	%	
the second secon	Coefficiente di uniformità	CU			
	Coefficiente di concavità	CC			
100 100 100 100 100 100 100 100 100 100	Limite Liquido	LL	25,2	%	
	Indice di Plasticità	ΙΡ	8,7	%	
	Simbolo di	grupp	0		
	GC				
	Nome del	gruppo	5		
Shiaia argillos	sa con sabbia				

Lo sperimentatore (Dott. Alessandro Miraldi)

Via San Salvador 3 00040 Pomezia (Rm)
Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.it

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 al sensi dell'Art. 8 del DPR n°246/93

Prove di laboratorio sui terreni (settore A) - Prove in sito (settore C)

N.VERB.ACCETT./CAMP.

993/1

Data ricevimento

19/01/2010

CERTIFICATO N.

28480 / TD

Data 25/01/2010

Data prelievo Data apertura 15/01/2010 20/01/2010 Data inizio prova 21/01/2010
Data fine prova 25/01/2010

Pag. 1/4 002 / 2010

COMMITTENTE

COMUNE DI LEONESSA

CANTIERE

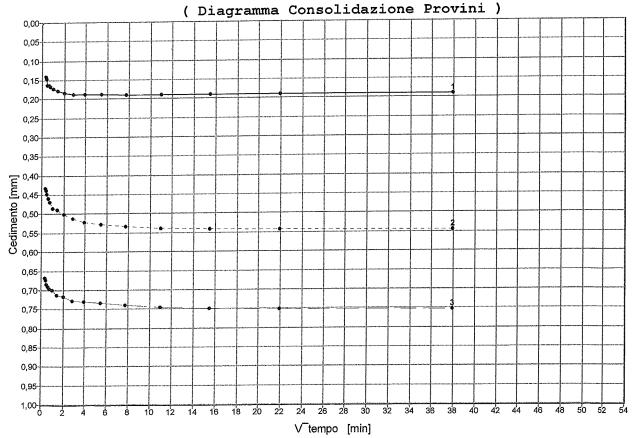
Comune di Leonessa

Sondaggio

S1

Campione CR1

Profondità [m] 5,60-6,00


COMMESSA

PROVA DI TAGLIO DIRETTO

ASTM D 3080/90

PROVINO N.	1 —	2	3	
Lato [mm]	60,52	60,14	60,51	
Area di base [cm²]	36,63	36,17	36,61	
Altezza iniziale [mm]	19,97	19,71	19,71	
Contenuto naturale d'acqua iniziale (%)	12,3	12,5	12,0	
Peso di volume iniziale [kN/m³]	20,74	21,15	21,27	
Altezza finale [mm]	19,78	19,17	18,96	
Contenuto naturale d'acqua finale (%)	13,8	12,9	12,1	
Pressione verticale [kPa]	49,03	98,07	196,13	· · · · · · · · · · · · · · · · · · ·
Cedimento finale [mm]	0,19	0,55	0,75	
t 100 [min]				

Velocità di deformazione calcolata [mm/min]

Lo sperimentatore (Dott. Alessandro Miraldi)

Via San Salvador 3 00040 Pomezia (Rm) Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.it

002/2010

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 ai sensi dell'Art. 8 del DPR n°246/93 Prove di laboratorio sul terreni (settore A) - Prove in sito (settore C)

28480 / TD 25/01/2010 Data CERTIFICATO N. 19/01/2010 N.VERB.ACCETT./CAMP. 993/1. Data ricevimento 21/01/2010 Data inizio prova 15/01/2010 Data prelievo 2/4 Pag.

25/01/2010 20/01/2010 Data fine prova Data apertura

COMUNE DI LEONESSA COMMITTENTE

Comune di Leonessa CANTIERE

Profondità [m] 5,60-6,00 Campione CR1 **S1** Sondaggio

PROVA DI TAGLIO DIRETTO

ASTM D 3080/90

COMMESSA

(Diagramma Consolidazione Provini)

PROVIN	O N 1	PROVING		PROVING		PROVING	PROVIN	O N.5
Tempo [min]	Deform.[mm]	Tempo [min]	Deform.[mm]		Deform.[mm]	Tempo [min]	Tempo [min]	Deform.[mm]
0,10	0,14	0,10	0,43	0,10	0,67			
0,17	0,15	0,17	0,44	0,17	0,67			
0,25	0,16	0,25	0,45	0,25	0,68			
0,40	0,16	0,40	0,46	0,40	0,69			
0,50	0,17	0,50	0,47	0,50	0,70			
1,00	0,17	1,00	0,49	1,00	0,70	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
2,00	0,18	2,00	0,49	2,00	0,71			
4,00	0,18	4,00	0,50	4,00	0,72	5.		
8,00	0,19	8,00	0,51	8,00	0,73			
15,00	0,19	15,00	0,52	15,00	0,73			
30,00	0,19	30,00	0,53	30,00	0,73			
60,00	0,19	60,00	0,53	60,00	0,74			
120,00	0,19	120,00	0,54	120,00	0,75			
240,00	0,19	240,00	0,54	240,00	0,75			
480,00	0,19	480,00	0,54	480,00	0,75			
1440,00	0,19	1440,00	0,54	1440,00	0,75			
		·						

Lo sperimentatore (Dott. Alessandro Miraldi)

Via San Salvador 3 00040 Pomezia (Rm) Tel./fax: 0691603360 - 0691603317 e-mall: GEOSTUDILAB@fastwebnet.it

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 al sensi dell'Art. 8 del DPR n°246/93

Prove di laboratorio sui terreni (settore A) - Prove in sito (settore C)

28480 / TD 25/01/2010 CERTIFICATO N. Data 19/01/2010 993/1 Data ricevimento N.VERB.ACCETT./CAMP. 21/01/2010 15/01/2010 Data inizio prova Data prelievo 3/4 25/01/2010 Pag. 20/01/2010 Data fine prova Data apertura

COMMITTENTE

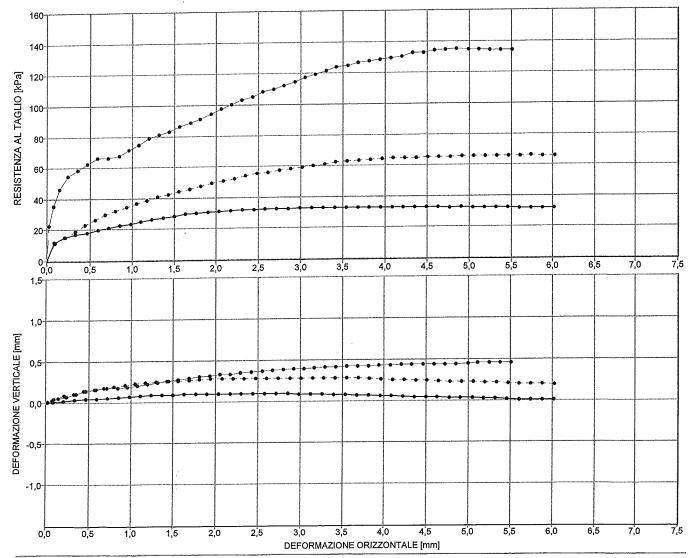
COMUNE DI LEONESSA

CANTIERE

Comune di Leonessa

Sondaggio

S1


Campione CR1

COMMESSA 002/2010

Profondità [m] 5,60-6,00

PROVA DI TAGLIO DIRETTO ASTM D 3080/90 RESIDUO

//o/iii = o o o o o o o o o o o o o o o o o			
PROVINO N.	1	2	3
Lato [mm]	60,52	60,14	60,51
Altezza [mm]	19,97	19,71	19,71
Velocità di deformazione [mm/min]	0,00667	0,00667	0,00667
Pressione verticale [kPa]	49,03	98,07	196,13

NOTE Eseguita su provini ricostituiti alla densità e umidità naturale, su materiale vagliato al 4,76 mm.

Lo sperimentatore (Dott. Alessandro Miraldi)

Via San Salvador 3 00040 Pomezia (Rm)
Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.it

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 ai sensi dell'Art. 8 del DPR n°246/93

Prove di laboratorio sui terreni (settore A) - Prove in sito (settore C)

28480 / TD 25/01/2010 Data CERTIFICATO N. 993/1 19/01/2010 Data ricevimento N.VERB.ACCETT./CAMP. 21/01/2010 Data prelievo 15/01/2010 Data inizio prova

25/01/2010 Pag. 4/4 Data fine prova Data apertura 20/01/2010

COMMITTENTE

002/2010 COMMESSA COMUNE DI LEONESSA

CANTIERE Comune di Leonessa

Profondità [m] 5,60-6,00 Campione CR1 **S1** Sondaggio

PROVA DI TAGLIO DIRETTO - RESIDUO ASTM D 3080/90

(Diagramma Provini)

(Diagramma Provini)														
PROVINO N.1 PROVINO N.2 PROVINO N				1	1 ONIV		1	VINO N						
Def.orizz.			Def.orizz.	Def.vert.	TAU	Def.orizz.	Def.vert.	TAU	Def.orizz.		TAU	Def.orizz.		TAU
[mm]	[mm]	[kPa]	[mm]	[mm]	[kPa]	[mm]	[mm]	[kPa]	[mm]	[mm]	[kPa]	[mm]	[mm]	[kPa]
0,20	0,02	15,11	0,21	0,08	15,01	0,08	0,03	35,30		.				
0,33	0,04	16,84	0,33	0,11	18,98	0,15	0,05	45,91						
0,47	0,04	17,84	0,44	0,14	23,17 26,26	0,24	0,10	58,25						
0,59 0,72	0,05	19,57	0,68	0,18	29,57	0,47	0,14	62,56						
0,85	0,06	22,29	0,80	0,20	32,00	0,59	0,16	66,29						
0,98	0,07	23,28	0,93	0,21	34,42	0,72	0,17	66,29						
1,11	0,08	24,77	1,05	0,23	36,41 38,40	0,85	0,17 0,18	67,72						
1,24	0,08	26,26	1,18	0,24	40,60	1,08	0,20	74,61						
1,50	0,09	28,24	1,43	0,25	42,15	1,20	0,22	78,63						
1,63	0,09	29,48	1,56	0,26	44,13	1,32	0,24	81,21						
1,77	0,09	29,97	1,69	0,26	45,46	1,45 1,57	0,25 0,28	83,22						
1,90	0,09	30,47	1,82	0,27 0,28	47,44	1,69	0,28	88,67						
2,03	0,09 0,09	30,96	2,08	0,28	50,75	1,81	0,30	91,25						
2,31	0,09	31,71	2,21	0,28	51,86	1,93	0,31	94,12						
2,44	0,09	31,71	2,34	0,28	54,06	2,05	0,33	97,57						
2,58	0,09	32,20	2,48	0,28 0,28	55,17 56,05	2,18	0,34	100,44 103,02						
2,72	0,09	32,45	2,75	0,28	57,15	2,42	0,36	105,03						
2,99	0,09	32,70	2,88	0,28	58,04	2,55	0,37	108,18						
3,13	0,09	32,70	3,01	0,28	59,14	2,68		109,62 112,20						
3,26	0,08	32,94	3,15	0,28 0,28	60,24 61,12	2,80		114,50						
3,40 3,54	0,08 0,08	32,94	3,41	0,28	62,23	3,05		117,37						
3,68	0,07	32,94	3,55	0,28	62,67	3,17		119,38						
3,81	0,07	32,94	3,69	0,28	63,33	3,30		121,38						
3,95	0,06	32,94	3,83	0,27 0,26	63,77 64,22	3,43		123,68 124,83						
4,08	0,06 0,05	32,94 32,94	3,96 4,10	0,26	64,66	3,68		126,55						
4,36	0,05	32,94	4,23	0,25	64,66	3,81	0,43	127,41	1					
4,50	0,04	32,94	4,37	0,25	64,88	3,94		128,56						
4,63	0,04	32,70	4,51	0,24	65,10 65,32	4,07 4,20		129,42 130,57						
4,77	0,04 0,03	32,45 32,70	4,64 4,78	0,24	65,32	4,33		132,57						
5,05	0,03	32,45	4,92	0,23	65,54	4,46		132,86						
5,18	0,03	32,45	5,06	0,23	65,54	4,59		134,30						
5,32	0,03	32,45	5,20	0,22	65,54	4,72		134,87 135,16						
5,46	0,02	32,45	5,33 5,47	0,22 0,21	65,76 65,76	4,85 4,99		134,69					·	
5,60 5,74	0,01	31,71	5,61	0,21	65,76	5,11		134,44						
5,87	0,01	31,71	5,74	0,21	65,98	5,24	0,45	134,24						
6,02	0,01	31,71	5,88	0,20	65,76	5,38		134,13						
			6,02	0,19	65,65	5,51	0,45	134,07						ļ
	İ													
														ľ
						1						ļ		

Lo sperimentatore (Dott. Alessandro Miraldi)

CANTIERE

Comune di Leonessa

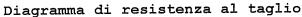
Sondaggio

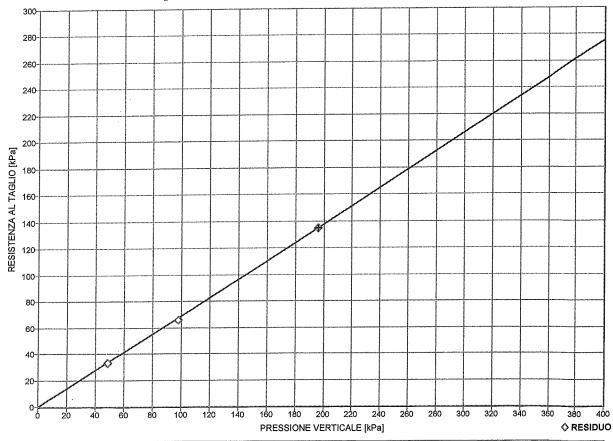
S1

Campione

CR1

Profondità


5,60-6,00


(Rif.:28480 / TD)

25/01/2010

993/1

PROVA DI TAGLIO	DIRETTO		ASTM D 3080/90
PROVINO N.	1	2	3
Lato [mm]	60,52	60,14	60,51
Altezza [mm]	19,97	19,71	19,71
Area di base [cm²]	36,63	36,17	36,61
Velocità di deformazione [mm/min]	0,00667	0,00667	0,00667
Contenuto naturale d'acqua iniziale (%)	12,3	12,5	12,0
Peso di volume iniziale [kN/m³]	20,74	21,15	21,27
Contenuto naturale d'acqua finale (%)	13,8	12,9	12,1
TAU a rottura (picco) [kPa]	0,00	0,00	0,00
Deformazione orizz.a rottura (picco) [mm]	0,00	0,00	0,00
Deformazione vert.a rottura (picco) [mm]	0,00	0,00	0,00
TAU a rottura (residuo) [kPa]	32,94	65,98	135,16
Deformazione orizz.a rottura (residuo) [mm]	3,40	5,88	4,99
Deformazione vert. a rottura (residuo) [mm]	0,08	0,20	0,45

CONDIZIONI DI PROVA	PICCO	RESIDUO	
Angolo di resistenza al taglio [°]		34,5	
Coesione intercetta [kPa]		0,0	

GEO⁄tudi /d

Via San Salvador 3 00040 Pomezia (Rm) Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.it

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 ai sensi dell'Art. 8 del DPR n°246/93

Prove di laboratorio sui terreni (settore A) - Prove in sito (settore C)

993/2 N.VERB.ACCETT./CAMP.

Data ricevimento Data prelievo

Data apertura

19/01/2010

28481 / AP CERTIFICATO N.

25/01/2010 Data

15/01/2010 20/01/2010 Data inizio prova Data fine prova

1/1 Pag.

COMMITTENTE

COMUNE DI LEONESSA

COMMESSA

002/2010

CANTIERE

Comune di Leonessa

Campione CR2

Profondità [m] 11,60-12,00

Sondaggio

DIAMETRO INT.: cm

LUNGHEZZA: cm

FUSTELLA

Sacchetto plastica

APERTURA CAMPIONE

(ASTM D 2488/93)

PROGRAMMA PROVE

APERTURA CAMPIONE RIMANEGGIATO PESO SPECIFICO DEI GRANI (ASTM D 854-92) CONTENUTO NATURALE DI ACQUA (ASTM D 2216-92)

PESO DI VOLUME

LIMITI DI ATTERBERG

GRANULOMETRIA

CLASSIFICA U.S.C.S.

TAGLIO DIRETTO C.D.

DESCRIZIONE VISUALE

Ghiaia con sabbia limosa debolmente argillosa di colore da grigio chiaro a marrone molto chiaro (10YR 7/2 - 7/3). La ghiala è di natura calcarea, da arrotondata a subangolare, spesso a contatto. Addensata, frazione fine umida e poco plastica. Reagente all'HCl.

DESCRIZIONE STRATIGRAFICA			[cm]	POCKET PENETR. [kg/cm²]	TOR VANE [kg/cm²]		[cm]	PROVINI
	0	0				0		
	10	10	-			10		TD1
Ghiaia con sabbia limosa debolmente argillosa di colore da grigio chiaro a marrone molto chiaro. La ghiaia è di natura calcarea, da arrotondata a subangolare, spesso a contatto. Addensata, frazione fine umida e poco plastica.	20	20				20		TD2
	30	30				30		
	40	40	n.			40	-	
	50	50	-			50		
	60	60	-			60		
	70	70	_			70	-	
	80	80				80	-	
	90	90				90	-	
	100	100				100		

QUALITA' DEL CAMPIONE

NOTE Prova di taglio diretto eseguita su provini ricostituiti alla densità e umidità naturale, su materiale vagliato al 4,76 mm

Lo sperimentatore (Dott. Alessandro Miraldi)

GEOSTUDI sri

Laboratorio geotecnico - Prove in sito

LABORATORIO AUTORIZZATO DAL MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI PRESIDENZA DEL CONSIGLIO SUPERIORE DEI LAVORI PUBBLICI – SERVIZIO TECNICO CENTRALE - D.P.R. n. 246/93, Art. 8 - Circolare n. 349/99 Concessione N. 52497 – SETTORE A (prove di laboratorio sui terreni) e SETTORE C (prove in sito)

Commessa:

76_07

Cantiere:

Comune di Leonessa

Committente:

Comune di Leonessa

SONDAGGIO:

S1

CAMPIONE:

CR2

PROFONDITA' (m)

11,60-12,00

GEO/tudi /d

Via San Salvador 3 00040 Pomezia (Rm)
Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.il

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 al sensi dell'Art. 8 del DPR n°246/93

Prove di laboratorio sui terreni (settore A) - Prove in sito (settore C)

N.VERB.ACCETT./CAMP. 993/2 Date

Data ricevimento

19/01/2010 15/01/2010 CERTIFICATO N. 28482 / FV

Data 25/01/2010

Data prelievo Data apertura

20/01/2010

Data inizio prova Data fine prova

Pag. 1/1

COMMITTENTE

COMUNE DI LEONESSA

COMMESSA

002/2010

CANTIERE Sondaggio

Comune di Leonessa

S1

Campione CR2

2

Profondità [m] 11,60-12,00

CARATTERISTICHE FISICHE E VOLUMETRICHE

CAR	All	:RIS	HCH	= 110	ICHE	: E V	OLUI	MEIL	иСп		
PESO SPECIFICO DEI GRANI (AS	STM D 854	1-92)	⇒								
Massa picn.+acqua+terr.secco [g]		503,97									
Temperatura [°C]	18,60	18,60									
Massa picnometro + acqua [g]	421,73	440,11									
Massa terreno secco [g]	99,41	101,59									
Peso specifico dei grani	2,70	2,69]								
Peso specifico dei grani medio	2,	69									
PROVA EFFETTUATA	TD1	TD2	TD3								
	/ACT	D 0046	00)		GRA	NDEZZ	E INIZI	ALI			
CONTENUTO NATURALE DI ACC	93,04	87,76	70,82			[
Massa conten.+terr.umido [g]	87,55	82,67	67,00								
Massa conten.+terr.secco [g]	19,48	19,76	19,47								
Massa contenitore [g]	8,1	8,1	8,0								The state of the s
Contenuto d'acqua (%)			0,0		<u> </u>	<u> </u>	L			 	L
PESO DI VOLUME UMIDO (BS 13	77(90) PA	RI 2)	D 60,51		1		ĺ			Г	
Lato / diametro provino [mm]	ilir	И	19,71								
Altezza provino [mm]	19,97	19,71	1 '								
Massa fustella + provino [g]	201,15	202,18	201,93								
Massa fustella [g]	52,49	52,18	51,76								
Peso di volume umido [kN/m³]	19,93	20,63	20,41		L			l		 	
CARATTERISTICHE DERIVATE		1-10-00			1		r	ſ			
Peso di volume del secco [kN/m³]	18,44	19,09	18,89								
Indice dei vuoti	0,432	0,384	0,399								
Porosita (%)	30,18	27,74	28,51								
Grado di saturazione	50,26	56,77	54,30								
			00)		GRA	ANDEZ.	ZE FINA	4 <i>LI</i>			
CONTENUTO NATURALE DI ACC		238,30	92) [250.65]		1						
Massa conten.+terr.umido [g]	242,73	1	В								
Massa conten.+terr.secco [g]	228,81	224,04	236,98								
Massa contenitore [g]	93,12	89,67	97,51						ļ		
Contenuto d'acqua (%)	10,3	10,6	9,8							 	
PESO DI VOLUME UMIDO (BS 13					1			i			
Altezza provino [mm]	19,40	18,43	17,80								
Massa fustella + provino [g]	201,15	202,18	201,93								
Massa fustella [g]	52,49	52,18	51,76								
Peso di volume umido [kN/m³]	20,93	22,58	22,96								
CARATTERISTICHE DERIVATE	,							i i		 	
Peso di volume del secco [kN/m³]	18,99	20,42	20,91				İ				
Indice dei vuoti	0,391	0,294	0,263	and in the latest and					ĺ		
Porosita (%)	28,13	22,73	20,84								
Grado di saturazione	70,60	97,21	100.00	<u></u>							#0#10.3M#80.0H.100.000.000.0M#100

Lo sperimentatore (Dott. Alessandro Miraldi)

GEO*r*tudi *i*rl

Via San Salvador 3 00040 Pomezia (Rm)
Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.it

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 ai sensi dell'Art. 8 del DPR n°246/93

Prove di laboratorio sui terreni (settore A) - Prove in sito (settore C)

N.VERB.ACCETT./CAMP.

993/2

Data ricevimento

19/01/2010 15/01/2010

CERTIFICATO N. Data inizio prova

28483 / IP 21/01/2010

COMMESSA

25/01/2010 Data

Data prelievo Data apertura

20/01/2010

Data fine prova

22/01/2010

Pag. 1/1

002/2010

COMMITTENTE

COMUNE DI LEONESSA

CANTIERE

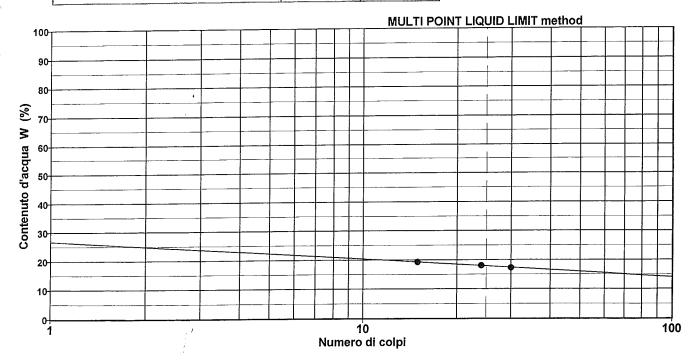
Comune di Leonessa

Sondaggio

S1

Campione CR2

Profondità [m] 11,60-12,00


LIMITI DI ATTERBERG ASTM D 4318/84

Descrizione del terreno

Ghiaia con sabbia limosa debolmente argillosa.

LIMITE LIQUIDO prova n.	1	2	3	4	5
Numero di colpi	30	24	15		
Contenuto d'acqua (%)	17,3 %	18,1 %	19,2 %		

LIMITE PLASTICO prova n.	1	2
Contenuto d'acqua (%)	12,0 %	12,0 %

LIMITE LIQUIDO

17,9 %

LIMITE PLASTICO

LP =

12,0 %

INDICE PLASTICO

5,9 %

Lo sperimentatore (Dott. Alessandro Miraldi)

GEO/tudi /rl

Via San Salvador 3 00040 Pomezia (Rm)
Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.it

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 ai sensi dell'Art. 8 del DPR n°246/93

Prove di laboratorio sui terreni (settore A) - Prove in sito (settore C)

993/2 N.VERB.ACCETT./CAMP.

S1

Data ricevimento Data prelievo

19/01/2010 15/01/2010

28484 / GR CERTIFICATO N. Data inizio prova

Data fine prova

22/01/2010

25/01/2010 Data

Data apertura

20/01/2010

25/01/2010

Pag. 1/1 002/2010

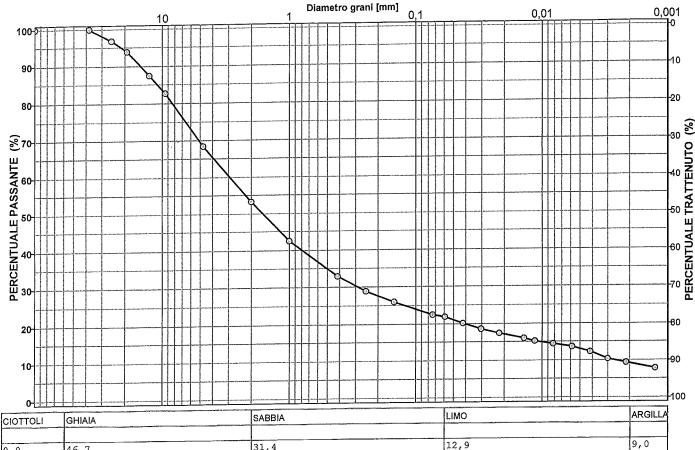
COMMITTENTE

Sondaggio

COMUNE DI LEONESSA

CANTIERE

Comune di Leonessa


Campione CR2

Profondità [m] 11,60-12,00

COMMESSA

ANALISI GRANULOMETRICA ASTM D422/63 - Class. AGI 1977

Ghiaia con sabbia limosa debolmente argillosa. Descrizione del terreno

0,0	46,	7		31,4	12,9							
Analisi per setacciatura Analisi per sediment												
Massa mat		VAGLI	APERTURA SETACC. mm	PERC.CUMUL PASSANTE	PERC.CUMUL TRATTENUTO	DIMENSIONE GRANULI mm	PERC.CUMUL PASSANTE	PERC.CUMUL TRATTENUTO				
0,0		3,0 inch 2.5 inch 1.5 inch	76,2000 63,5000 38,1000	100,00 100,00 100,00	0,00 0,00 0,00	0,0589 0,0425 0,0305	21,89 20,04 18,56	78,11 79,96 81,44				
117 5		1 0 inch	25 4000	96.78	3.22	0,0218	17,44	82,56				

0.0	2 O inch	76,2000	100,00	0,00	0,0589	21,89	78,11	
0,0	3,0 inch		100,00	0,00	0,0425	20,04	79,96	
0,0	2.5 inch	63,5000			0,0305	18,56	81,44	
0,0	1.5 inch	38,1000	100,00	0,00	•			
117,5	1.0 inch	25,4000	96,78	3,22	0,0218	17,44	82,56	
101,7	3/4 inch	19,0500	93,99	6,01	0,0140	15,96	84,04	
237,1	1/2 inch	12,7000	87,50	12,50	0,0115	15,22	84,78	
173,7	3/8 inch	9,5100	82,74	17,26	0,0082	14,48	85,52	
527,9	4 mesh	4,7600	68,28	31,72	0,0058	13,74	86,26	
	10 mesh	2,0000	53,33	46,67	0,0042	12,26	87,74	
545,4			42,63	57,37	0,0030	10,41	89,59	
390,8	16 mesh	1,0000			, ,	9,30	90,70	
353,5	40 mesh	0,4200	32,94	67,06	0,0021			
147,5	60 mesh	0,2500	28,90	71,10	0,0012	7,81	92,19	
107,7	100 mesh	0,1490	25,95	74,05		1		
127,9	200 mesh	0.0740	22,45	77,55		ì		
/-	11.001.	.,						
							1	
				11	i			

NOTE

Lo sperimentatore (Dott. Alessandro Miraldi)

GEO/tudi /rl

Via San Salvador 3 00040 Pomezia (Rm) Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.it

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 ai sensi dell'Art. 8 del DPR n°246/93 Prove di laboratorio sul terreni (settore A) - Prove in sito (settore C)

N.VERB.ACCETT./CAMP.

993/2

Data ricevimento

19/01/2010

CERTIFICATO N.

28485 / CLU

25/01/2010 Data

Data prelievo Data apertura 15/01/2010 20/01/2010

22/01/2010 Data inizio prova Data fine prova

25/01/2010

COMMESSA

1/1

002/2010

COMMITTENTE

COMUNE DI LEONESSA

CANTIERE

Comune di Leonessa

Sondaggio

S1

Campione CR2

Profondità [m] 11,60-12,00

CLASSIFICAZIONE TERRENO

U.S.C.S. - Unified Soil Classification System ASTM D 2487/93

		Perce	entuale pa	assante
	Setaccio 76,2 mm		100	%
	Setaccio 4,76 mm		68	%
	Setaccio 0,074 mm		22	%
	Coefficiente di uniformità	CU		
	Coefficiente di concavità	СС		
	Limite Liquido	LL	17,9	%
	Indice di Plasticità	ΙP	5,9	%
	Simbolo di	grupp	0	
	SC-SM			
	Nome del g	gruppo		
bia argillo	sa e limosa con ghiaia			

Lo sperimentatore (Dott. Alessandro Miraldi)

Via San Salvador 3 00040 Pomezia (Rm)

Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.it

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 ai sensi dell'Art. 8 del DPR n°246/93

Prove di laboratorio sui terreni (settore A) - Prove in sito (settore C)

N.VERB.ACCETT./CAMP.

993/2

Data ricevimento

Data apertura

19/01/2010 15/01/2010 CERTIFICATO N.

28486 / TD

Data 25/01/2010

Data prelievo

20/01/2010

Data inizio prova Data fine prova

21/01/2010 25/01/2010

Pag. 1/4

COMMITTENTE

COMUNE DI LEONESSA

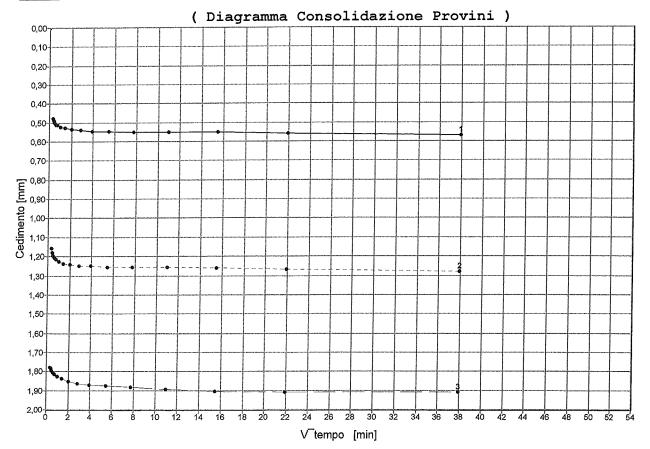
Comune di Leonessa

COMMESSA 002/2010

CANTIERE Sondaggio

S1

Campione CR2


Profondità [m] 11,60-12,00

PROVA DI TAGLIO DIRETTO

ASTM D 3080/90

PROVINO N.	1	2	3	
Lato [mm]	60,52	60,14	60,51	
Area di base [cm²]	36,63	36,17	36,61	
Altezza iniziale [mm]	19,97	19,71	19,71	
Contenuto naturale d'acqua iniziale (%)	8,1	8,1	8,0	
Peso di volume iniziale [kN/m³]	19,93	20,63	20,41	
Altezza finale [mm]	19,40	18,43	17,80	
Contenuto naturale d'acqua finale (%)	10,3	10,6	9,8	
Pressione verticale [kPa]	49,03	98,07	196,13	
Cedimento finale [mm]	0,57	1,28	1,91	
t 100 [min]				

Velocità di deformazione calcolata [mm/min]

Lo sperimentatore (Dott. Alessandro Miraldi)

Via San Salvador 3 00040 Pomezia (Rm)

Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.lt

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 ai sensi dell'Art. 8 del DPR n°246/93 Prove di laboratorio sul terreni (settore A) - Prove in sito (settore C)

28486 / TD 25/01/2010 19/01/2010 CERTIFICATO N. Data 993/2 Data ricevimento N.VERB.ACCETT./CAMP. 21/01/2010 Data inizio prova 15/01/2010 Data prelievo 2/4 25/01/2010 20/01/2010 Data fine prova Pag. Data apertura COMMESSA 002/2010

COMMITTENTE

CANTIERE

COMUNE DI LEONESSA

Comune di Leonessa

Sondaggio

S1

Campione CR2 Profondità [m] 11,60-12,00

PROVA DI TAGLIO DIRETTO

ASTM D 3080/90

(Diagramma Consolidazione Provini)

PROVINO N.1		PROVING		PROVIN		PROVIN		PROVIN	
Tempo [min]	Deform.[mm]	Tempo [min]	Deform.[mm]	Tempo [min]	Deform.[mm]	Tempo [min]	Deform.[mm]	Tempo [min]	Deform.[mm]
0,10	0,48	0,10	1,16	0,10	1,78				
0,17	0,49	0,17	1,18	0,17	1,78				
0,25	0,50	0,25	1,20	0,25	1,80				
0,40	0,51	0,40	1,21	0,40	1,81				
0,50	0,51	0,50	1,21	0,50	1,81				
1,00	0,52	1,00	1,23	1,00	1,82				
2,00	0,53	2,00	1,24	2,00	1,84				
4,00	0,53	4,00	1,24	4,00	1,85			1.	
8,00	0,54	8,00	1,25	8,00	1,86				
15,00	0,55	15,00	1,25	15,00	1,87				
30,00	0,55	30,00	1,25	30,00	1,88				
60,00	0,55	60,00	1,25	60,00	1,88				
120,00	0,55	120,00	1,25	120,00	1,89			2	
240,00	0,55	240,00	1,26	240,00	1,90				
480,00	0,56	480,00	1,27	480,00	1,91]	7.	
1440,00	0,57	1440,00	1,28	1440,00	1,91				
		•							
		V							
İ									
	Ì								

Lo sperimentatore (Dott. Alessandro Miraldi)

GEO/tudi /d

Via San Salvador 3 00040 Pomezia (Rm)
Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.it

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 al sensi dell'Art. 8 del DPR n°246/93

Prove di laboratorio sui terreni (settore A) - Prove in sito (settore C)

993/2 N.VERB.ACCETT./CAMP.

Data ricevimento Data prelievo

Data apertura

CERTIFICATO N. 19/01/2010 15/01/2010

20/01/2010

28486 / TD 21/01/2010 Data inizio prova

25/01/2010 Data

Data fine prova

25/01/2010

3/4 Pag. 002/2010

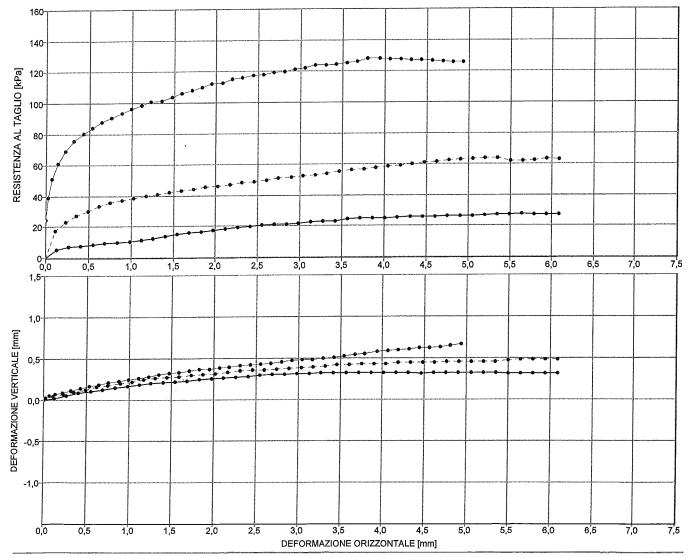
COMMITTENTE

COMUNE DI LEONESSA

CANTIERE Sondaggio

Comune di Leonessa S1

Campione CR2


Profondità [m] 11,60-12,00

COMMESSA

- RESIDUO PROVA DI TAGLIO DIRETTO

ASTM D 3080/90

PROVINO N.	1	2	3
Lato [mm]	60,52	60,14	60,51
Altezza [mm]	19,97	19,71	19,71
Velocità di deformazione [mm/min]	0,01	0,01	0,01
Pressione verticale [kPa]	49,03	98,07	196,13

NOTE Eseguita su provini ricostituiti alla densità e umidità naturale, su materiale vagliato al 4,76 mm.

Lo sperimentatore (Dott. Alessandro Miraldi)

N.VERB.ACCETT./CAMP.

Via San Salvador 3 00040 Pomezia (Rm)
Tel./fax: 0691603360 - 0691603317 e-mail: GEOSTUDILAB@fastwebnet.it

Data apertura

Concessione Ministero delle Infrastrutture e Trasporti n° 52497 al sensi dell'Art. 8 del DPR n°246/93

Prove di laboratorio sui terreni (settore A) - Prove in sito (settore C)

Data ricevimento 19/01/2010 Data prelievo 15/01/2010

20/01/2010

28486 / TD CERTIFICATO N. Data inizio prova

21/01/2010 25/01/2010

25/01/2010 Data 4/4

Pag. 002/2010 COMMESSA

COMMITTENTE

COMUNE DI LEONESSA

993/2

CANTIERE

Comune di Leonessa

Sondaggio

S1

Campione CR2

Data fine prova

Profondità [m] 11,60-12,00

PROVA DI TAGLIO DIRETTO - RESIDUO ASTM D 3080/90

(Diagramma Provini)

770		NT 1	DDO	VINO 1			VINO	NI 3		VINO	N 4	PRO	VINO I	N . 5
	VINO : Def.vert.		1	Def.vert.	TAU	Def.orizz.			1	Def.vert.			Def.vert.	
[mm]	[mm]	[kPa]	[mm]	[mm]	[kPa]	[mm]	[mm]	[kPa]	[mm]	[mm]	[kPa]	[mm]	[mm]	[kPa]
	0,05	6,94	0,23	0,07	22,95	0,02	0,03	39,03						
0,27	0,08	7,68	0,36	0,09	27,36	0,07	0,05	51,37						
0,55	0,10	8,42	0,49	0,13	30,23	0,14	0,07	61,12						
0,69	0,13	9,41	0,62	0,16	33,10	0,23	0,09	68,87						
0,84	0,15	9,91	0,76	0,18	35,53	0,32	0,12 0,14	75,47						
0,98	0,16	10,40	0,89	0,20	37,07 38,62	0,43	0,17	83,79				1		
1,12	0,10	12,38	1,17	0,24	39,72	0,65	0,19	87,52						
1,40	0,21	13,62	1,31	0,26	41,04	0,76	0,21	90,68		Ì				
1,54	0,22	14,86	1,45	0,27	42,37	0,88	0,23	93,55						
1,69	0,23	16,10	1,59	0,28	43,25	1,00	0,25	96,42						ĺ
1,83	0,25	16,60	1,73	0,30	44,13	1,11	0,27	98,71 100,72						
1,97	0,26	17,34	1,88	0,31 0,32	45,46 46,12	1,23	0,20	101,58]	
2,12	0,27	19,32	2,17	0,33	46,78	1,47	0,32	103,59						
2,41	0,28	19,82	2,31	0,35	48,11	1,59		106,18						
2,55	0,30	20,56	2,46	0,36	48,99	1,71		107,90						
2,69	0,31	21,06	2,60	0,36	49,65	1,83 1,95		109,62		1				
2,84	0,31	21,30	2,74	0,37 0,37	50,98 51,64	2,07		112,78						
2,98	0,31	22,54	3,03	0,39	52,52	2,19		114,78						
3,27	0,32	22,79	3,18	0,40	53,18	2,31	0,41	115,93			Ì			
3,42	0,32	23,04	3,32	0,41	54,06	2,43		117,08						
3,57	0,32	24,52	3,46	0,42	55,17	2,56		117,94						
3,72	0,32	24,77	3,61	0,42 0,43	56,27 56,71	2,68 2,80	0,44	119,38 119,66			ĺ			
3,86 4,01	0,32 0,32	24,77 25,02	3,76 3,90	0,43	57,82	2,93		121,10	1					
4,16	0,32	25,51	4,04	0,43	58,70	3,05		121,96						
4,31	0,32	25,76	4,19	0,44	59,14	3,17		123,68						
4,46	0,32	26,01	4,33	0,44	60,02	3,30		123,97						
4,61	0,32	26,01	4,48	0,45	60,90	3,43	0,51	124,54 125,40						
4,76	0,32	26,26	4,62 4,77	0,45 0,45	61,35 62,23	3,55 3,67		126,26						
4,91 5,06	0,32 0,32	26,50 26,50	4,91	0,45	62,67	3,79		128,27						
5,20	0,32	26,75	5,05	0,45	63,33	3,94		127,95						
5,35	0,32	27,25	5,20	0,45	63,77	4,06		127,76				İ		
5,50	0,32	27,25	5,35	0,46	63,77	4,19		127,60						
5,65	0,32	27,50	5,50	0,47	61,79	4,31	0,61	127,22 126,98						
5,79	0,32 0,32	27,28 27,17	5,65 5,79	0,48	62,01 62,45	4,44		126,63						
5,94 6,08	0,32	27,10	5,94	0,48	63,11	4,69		126,39						
0,00	0,02	,_0	6,09	0,48	62,89	4,81	0,65	125,95						
Ì	İ			1		4,93	0,66	125,80					i	
	ļ		:	İ	İ									
													ļ	
								[
						ļ								
				}				ĺ]]		
									İ					

Lo sperimentatore (Dott. Alessandro Miraldi)

CANTIERE

Comune di Leonessa

Sondaggio

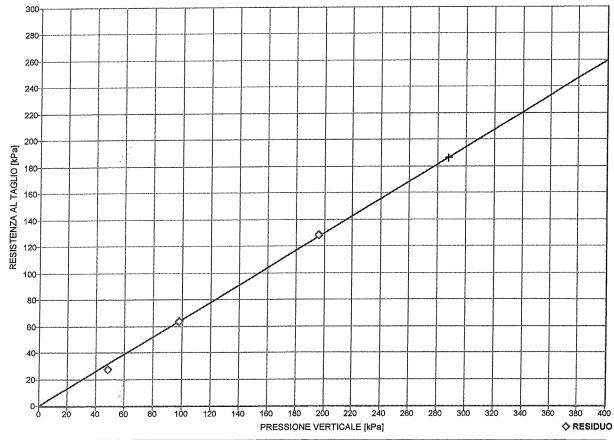
S1

Campione

CR2

Profondità

11,60-12,00


(Rif.:28486 / TD)

25/01/2010

993/2

PROVA DI TAGLIO	DIRETTO		ASTM D 3080/90
PROVINO N.	1	2	3
Lato [mm]	60,52	60,14	60,51
Altezza [mm]	19,97	19,71	19,71
Area di base [cm²]	36,63	36,17	36,61
Velocità di deformazione [mm/min]	0,01	0,01	0,01
Contenuto naturale d'acqua iniziale (%)	8,1	8,1	8,0
Peso di volume iniziale [kN/m³]	19,93	20,63	20,41
Contenuto naturale d'acqua finale (%)	10,3	10,6	9,8
TAU a rottura (picco) [kPa]	0,00	0,00	0,00
Deformazione orizz.a rottura (picco) [mm]	0,00	0,00	0,00
Deformazione vert.a rottura (picco) [mm]	0,00	0,00	0,00
TAU a rottura (residuo) [kPa]	27,28	63,77	127,95
Deformazione orizz.a rottura (residuo) [mm]	5,79	5,35	3,94
Deformazione vert. a rottura (residuo) [mm]	0,32	0,46	0,57

Diagramma di resistenza al taglio


CONDIZIONI DI PROVA	PICCO	RESIDUO	
Angolo di resistenza al taglio [°]		33,0	
Coesione intercetta [kPa]		0,0	

NOTE Eseguita su provini ricostituiti alla densità e umidità naturale, su materiale vagliato al 4,76 mm.

INDAGINI GLOGNOSTICHE ED ANALISI DI LABORATORIO GLOTENCICO PLESSO SCOLASTICO - LEONESSA

Committeets	Distal di Kauziana	97.4.3.10	V.A	_at
TOMUNE DI LEONESSA	Green Ph 2010	1046	9	63

COMMITTENTE DOTT. GEOL. L. NOLASCO 28/12/2007

Comune di Leonessa (Ri)

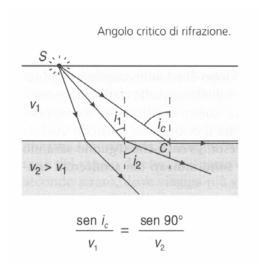
Prospezione sismica a rifrazione ed analisi delle onde superficiali (M.A.S.W.) eseguite nell'ambito dei lavori di adeguamento alla normativa antisismica della scuola media statale "Chiaretti".

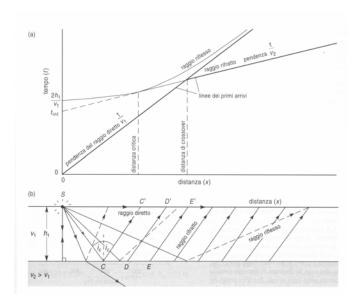
dott. geol. Siro Margottini

dott. geol. Flavio Cecchini

1. Premessa

Nell'ambito degli studi inerenti l'adeguamento alla normativa antisismica vigente della Scuola Media Statale "Chiaretti", su incarico del dott. geol. Leonardo Nolasco è stata realizzata una prospezione sismica a rifrazione volta a fornire indicazioni quantitative sugli spessori dei riporti e/o dei terreni a basso stato di addensamento e la distribuzione della velocità delle onde S (VS₃₀) lungo un profili sismici MASW verticali. Tale prospezione si è articolata nell'acquisizione di n. 2 sezioni tomografiche sismiche a rifrazione lungo le direttrici A-B, C-D e di 2 profili verticali delle onde S mediante analisi delle onde di superficie (M.A.S.W.)



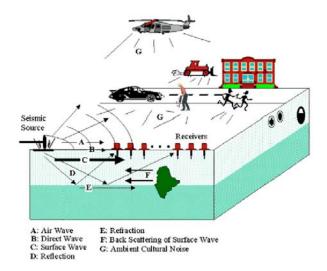

2. Alcuni cenni sulla tecnica utilizzata

Tomografia sismica a rifrazione

La sismica a rifrazione è una metodologia di rilievo conosciuta da molti anni e che sfrutta un caso particolare di rifrazione in cui il raggio sismico corre lungo un'interfaccia contemporaneamente rimandando i raggi sismici verso la superficie.

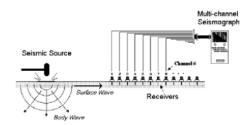
Mediante la realizzazione di diagrammi tempo-distanza è possibile ricostruire le traiettorie dei raggi sismici nel sottosuolo, le loro velocità e quindi avere informazioni sull'assetto stratigrafico dei terreni nel sottosuolo

Utilizzando "punti di energizzazione" multipli ed in differenti posizioni lungo lo stendimento scelto è possibile ricostruire, mediante l'analisi del campo di velocità delle onde sismiche di volume, i più complessi assetti del substrato geologico.



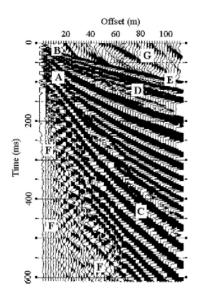
analisi multicanale delle onde di superficie (M.A.S.W.)

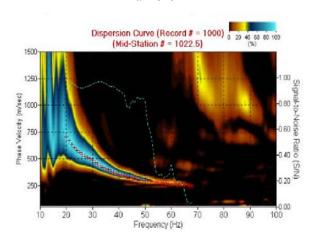
Il M.A.S.W. è una metodologia sismica utilizzata per la caratterizzazione delle unità subsuperficiali (fino ed oltre 30 m di profondità) presenti nel sottosuolo mediante la generazione di profili unidimensionali e tomografie bidimensionali del campo di velocità delle onde S (Vs). Come è ben noto le onde S sono direttamente correlabili ai parametri geomeccanici delle rocce che attraversano. Questa metodologia utilizza le onde superficiali di Raleygh normalmente chiamate ground roll.

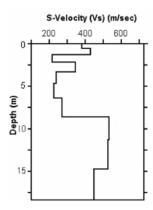

La registrazione avviene attraverso un sismografo multicanale connesso a più geofoni. La modalità di propagazione delle onde di superficie viene analizzata attraverso tecniche di processamento particolari che permettono di associare un profilo verticale delle Vs alle onde di superficie registrate.

La notevole energia delle onde di superficie (tipo Raleygh) permette di lavorare e di effettuare prospezioni anche in aree dove normalmente non è possibile con le classiche indagini sismiche a riflessione o a rifrazione data la bassa energia delle onde riflesse o rifratte che facilmente possono essere disturbate da onde di altro tipo legate alla normale noise ambientale.

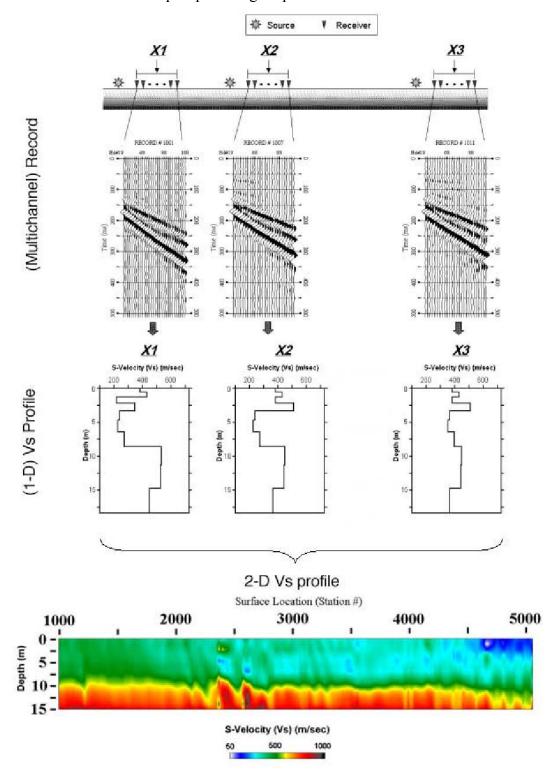
il processo di acquisizione e di elaborazione può essere brevemente schematizzato come segue:


A) energizzazione del terreno mediante una massa battente oppure esplosivo.




B) acquisizione e preprocessamento delle onde registrate in un diagramma spazio-tempo

C) estrazione della curva di dispersione frequenza-velocità di fase con controllo del rapporto segnalerumore


D) inversione mediante iterazioni multiple e creazione di un modello unidimensionale profondità-onde S (Vs) sulla verticale di ogni geofono.

E) eventuale elaborazione di tutti i profili unidimensionali in una immagine tomografica bidimensionale dell'andamento delle velocità delle onde S (Vs) con la possibilità di riconoscere i diversi layer, ed eventuali corpi sepolti lungo il profilo effettuato.

3. Strumentazioni utilizzate e modalità operative

Per l'acquisizione è stato utilizzato un sismografo Geometrics ES-3000, dotato di geofoni Geospace da 14 Hz. Per l'interpretazione dei dati è stato utilizzato il software di interpretazione Seismager 2d commercializzato dalla OYO, mentre per la MASW si è fatto utilizzo del software Surseis 1.5 del K.G.S.

Operativamente sono state realizzate delle sezioni sismiche lungo le tracce mostrate in figura 1.

Da un punto di vista pratico, per l'acquisizione delle tomografie a rifrazione sono stati utilizzati stendimenti composti da 12 geofoni distanziati 5 m. In tutti gli stendimenti sono stati realizzati 6 shots interni agli stendimenti; per l'energizzazione del terreno si è fatto uso di una mazza da 9 kg su una piastra metallica di alluminio 20cm X 20cm; tale mazza è stata collegata ad un trigger a sua volta collegato con il sismografo.

Per la M.A.S.W. sono stati utilizzati geofoni da 14 hz ed uno stendimento con distanza sorgente-primo ricevitore pari a 5 e 10 m ed una interdistanza geofonica pari a 1 m.

Per l'esatta ubicazione delle sezioni sismiche è stata utilizzata la mappa fornita dalla Committenza,.

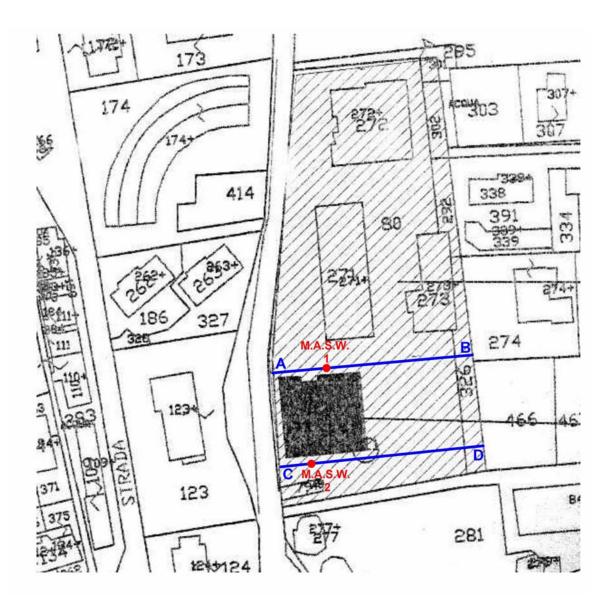
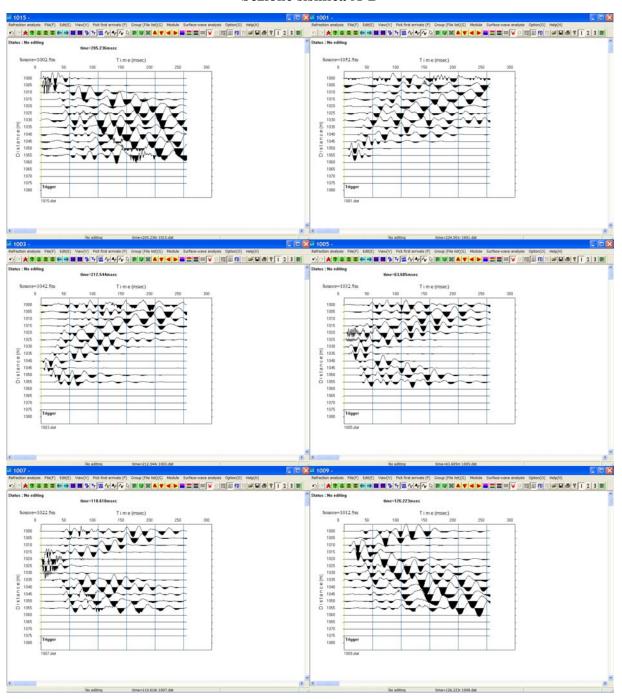


Figura 1: ubicazione della linee sismiche a rifrazione A-B E C-D e dei profili verticali M.A.S.W.



4. Risultati della tomografia sismica a rifrazione

Nelle immagini seguenti sono rappresentati, in diagrammi spazio-tempo, i sismogrammi relativi agli stendimenti sismici eseguiti, vengono di seguito mostrate le sezioni sismiche interpretate.

Sezione sismica A-B

sezione sismica C-D

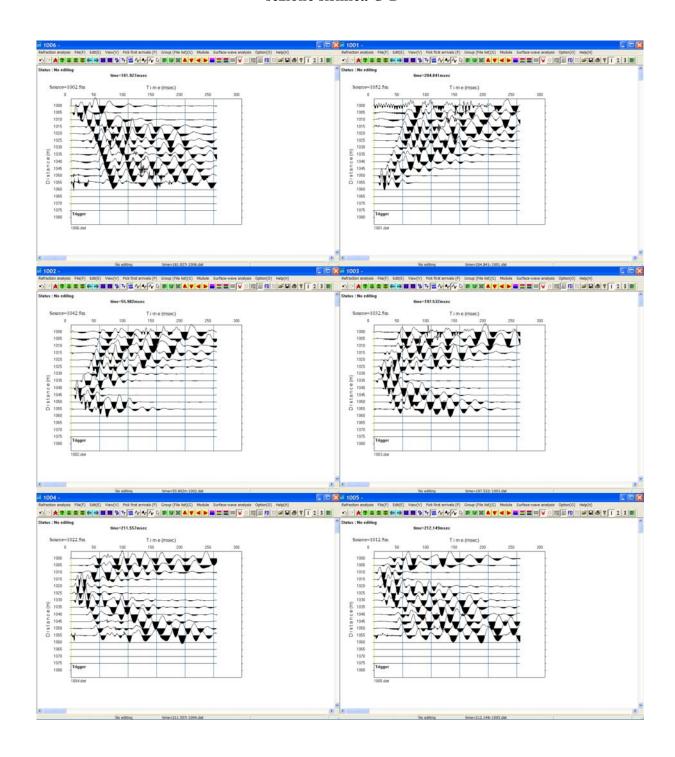


Figura 2: sismogrammi registrati

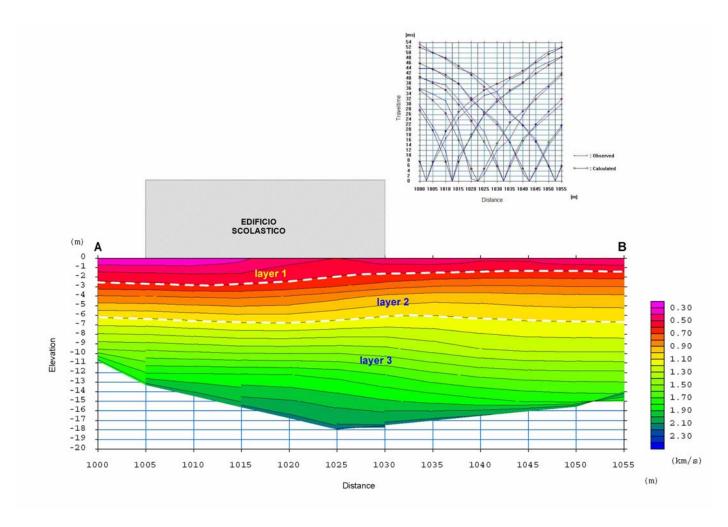


Figura 3: modello tomografico del campo di velocità delle onde P per lo stendimento A-B

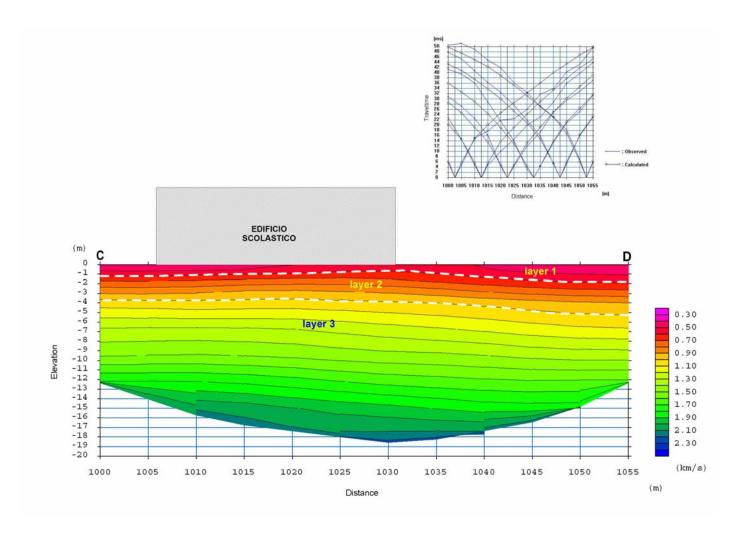


Figura 4: modello tomografico del campo di velocità delle onde P per lo stendimento C-D

Nelle sezioni realizzate è stato possibile investigare 18 m di profondità a partire dal piano campagna.

Le profondità d'indagine sono funzione principalmente delle lunghezze degli stendimenti utilizzati.

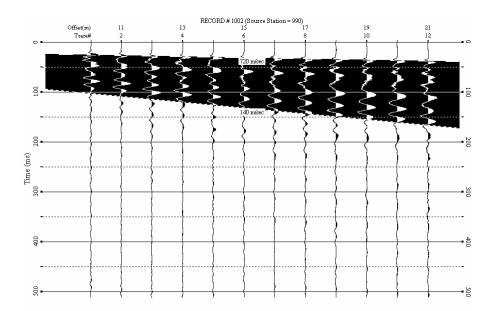
Le velocità rilevate delle onde di compressione (Vp), sono congruenti nelle due sezioni e vanno da 0,4 km/sec fino ad un massimo di 2,1 km/sec.

E' possibile riconoscere 3 layer (strati) caratterizzati dalle seguenti velocità delle onde P (Vp):

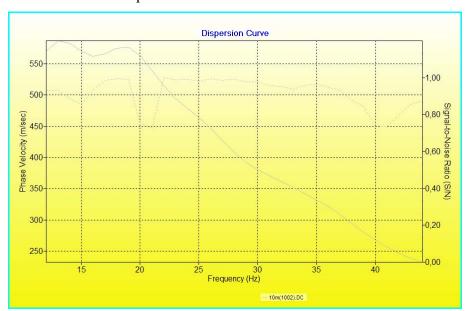
Layer 1) da 0,3 a 0,5 km/s ascrivibile alla presenza di una coltre superficiale di alterazione o di terreni di riporto o colluvium aventi spessori che variano da qualche decimetro fino ad un massimo di circa 3 m. Tali unità litotecniche sono caratterizzate da **qualità geomeccaniche molto scadenti.**

Layer 2)da 0,5 a 1,0 km/s, ascrivibile alla presenza di unità litotecniche caratterizzate da <u>qualità</u> geomeccaniche da medie a scadenti.

Layer 3) *da 1,0 a 2,1* km/s, ascrivibile ad orizzonti di terreni più competenti di quelli superiori. Tali unità litotecniche sono caratterizzate da **qualità geomeccaniche da medie a buone**.



5. Risultati della M.A.S.W.

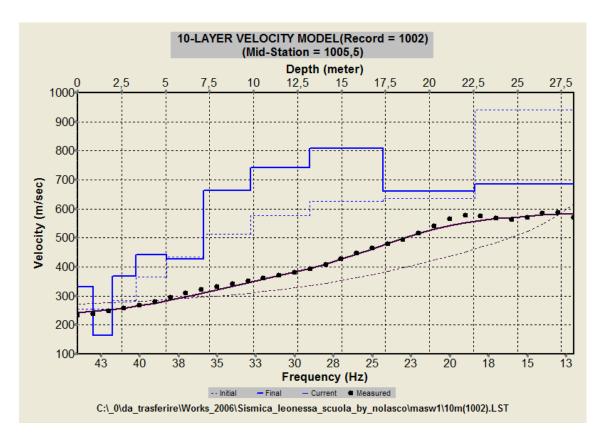

Nel presente paragrafo vengono illustrati i risultati dei profili M.A.S.W.:

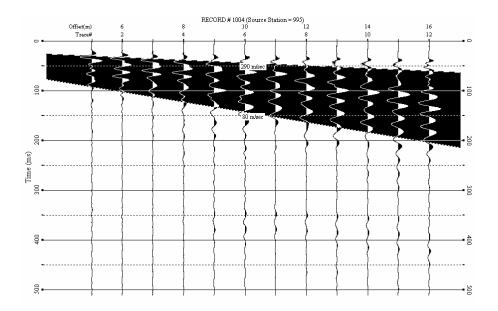
Profilo verticale M.A.S.W. M1:

Nella figura seguente è mostrato il sismogramma d'acquisizione della M.A.S.W.,

la curva di dispersione estratta mediante analisi "overtone"

Ed infine il profilo verticale delle onde S calcolato fino a circa 27 m di profondità a partire dal p.c. utilizzando frequenze comprese tra 13 e 45 hz.

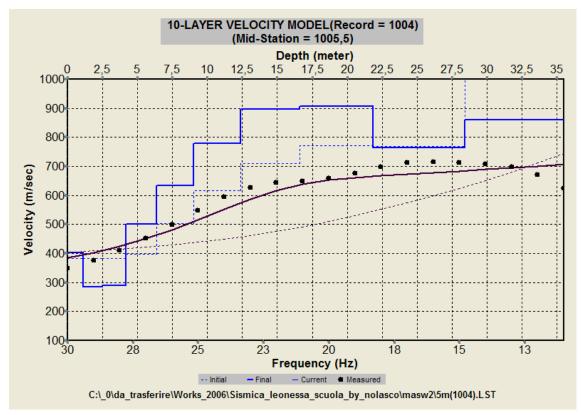



Figura 5: profilo verticale delle onde S calcolato fino a circa 27 m a partire dal p.c.



Profilo verticale M.A.S.W. M2:

Nella figura seguente è mostrato il sismogramma d'acquisizione della M.A.S.W.,


la curva di dispersione estratta mediante analisi "overtone"

Ed infine il profilo verticale delle onde S calcolato fino a circa 28 m di profondità a partire dal p.c. utilizzando frequenze comprese tra 12 e 30 hz.

Sulla base dei dati di velocità delle onde S osservabili nei due profili verticali è possibile fornire una valutazione della VS_{30} seguendo la relazione:

$$V_{S30} = \frac{30}{\sum_{i=1,N} \frac{h_i}{V_i}}$$

Pertanto:

Sondaggio sismico verticale M1 \rightarrow VS₃₀ = 568 m/s

Sondaggio sismico verticale M2 \rightarrow VS₃₀ = 653 m/s

 VS_{30} media = 610 m/s

Si allegano le tabelle di calcolo per la VS_{30} dei due sondaggi sismici verticali

M1			
		velocità	
profondità	spessore	onde S	rapporto
(m)	strato (m)	(m/s)	hi/vi
1	1	220	0,0045
2	1	220	0,0045
3	1	450	0,0022
4	1	450	0,0022
5	1	450	0,0022
6	1	450	0,0022
7	1	450	0,0022
8	1	670	0,0015
9	1	670	0,0015
10	1	670	0,0015
11	1	730	0,0014
12	1	730	0,0014
13	1	730	0,0014
14	1	800	0,0013
15	1	800	0,0013
16	1	800	0,0013
17	1	800	0,0013
18	1	670	0,0015
19	1	670	0,0015
20	1	670	0,0015
21	1	670	0,0015
22	1	670	0,0015
23	1	690	0,0014
24	1	690	0,0014
25	1	690	0,0014
26	1	690	0,0014
27	1	690	0,0014
28	1	690	0,0014
29	1	690	0,0014
30	1	690	0,0014
			0,0528

VS30 568 m/s

M2					
profondità	spessore	velocità onde	rapporto		
(m)	strato (m)	S (m/s)	hi/vi		
1	1	300	0,0033		
2	1	300	0,0033		
3	1	300	0,0033		
4	1	500	0,0020		
5	1	500	0,0020		
6	1	500	0,0020		
7	1	640	0,0016		
8	1	640	0,0016		
9	1	640	0,0016		
10	1	780	0,0013		
11	1	780	0,0013		
12	1	780	0,0013		
13	1	900	0,0011		
14	1	900	0,0011		
15	1	900	0,0011		
16	1	900	0,0011		
17	1	900	0,0011		
18	1	900	0,0011		
19	1	900	0,0011		
20	1	900	0,0011		
21	1	900	0,0011		
22	1	770	0,0013		
23	1	770	0,0013		
24	1	770	0,0013		
25	1	770	0,0013		
26	1	770	0,0013		
27	1	770	0,0013		
28	1	770	0,0013		
29	1	860	0,0012		
30	1	860	0,0012	VS30	
			0,0460	653	m/s

#

